
Using a managed container service for running 

and scaling Kubernetes applications in the cloud

Murray Smart

GM Tech Delivery - Canstar



Developing mature DevOps practices to 

operationalise large scale deployments

https://www.rawpixel.com/search/skyscraper


DevOps practices for large scale deployments

● Communication
○ Collaborating Teams

● Process
○ Continuous Integration (CI)

○ Continuous Deployment (CD)

● Context
○ Customer Satisfaction

● Tooling
○ Effective Tools

○ Test Automation

https://www.rawpixel.com/search/skyscraper


Communication

● Collaborating Teams
○ Trust each other

○ Understand the value of role distinction

○ Leverage the strengths of team members

○ Self organise

○ Own what they build

○ Always willing to grow and learn new skills

https://www.rawpixel.com/search/skyscraper


Context

● Customer Satisfaction
○ Purpose built solutions

○ Monitoring for success

○ Responsive feedback loop

https://www.rawpixel.com/search/skyscraper


Process

● Continuous Integration (CI)
○ Trunk based development

○ Feature flags (build or deploy 

stage)

○ Mob programming

○ Established coding standards

● Continuous Deployment 

(CD)
○ Requires automated testing

○ Continuous delivery (stepping 

stone)

https://www.rawpixel.com/search/skyscraper


Tooling

● Effective Tools
○ Version Control

■ Infrastructure as Code (Hardware)

■ Configuration as Code (Software)

■ Source Code (Application)

○ Pipeline Management

○ Automation

○ Documentation

● Test Automation
○ Input vs Outcome not Implementation

○ Confidence to Release is the Goal

https://www.rawpixel.com/search/skyscraper


Combining Kubernetes and cloud native 

managed services to dynamically scale

https://www.pxfuel.com/en/free-photo-qimbh


Why Kubernetes?

● Container orchestration that 

scales

● Configurable auto-pod migration 

on node failures

● Easy debugging / pod 

management

● Network configuration

● Easy resource management

● Deployment continuity

● Multi-cloud capable

● Rolling update support

● Strong cloud native tool 

integration

https://www.pxfuel.com/en/free-photo-qimbh


Why Cloud Native Managed Services?

● Multiple support options
○ Online communities

○ Documentation and guides

○ Often includes direct provider support

● Dynamic scalability
○ Rapid access to additional infrastructure 

and resources on demand

● No infrastructure maintenance 

costs

● Disaster recovery

● Centralised control
○ One stop shop for entire cloud 

computing stacks

○ Logging

● Provider migration options

● Services designed for low effort 

integration

https://www.pxfuel.com/en/free-photo-qimbh


Putting it all together

● Infrastructure as Code
○ Reduce DR impact potential

○ Faster debugging

○ Consistency and reusability

○ Reduced costs by shutting down 

internally used node groups outside 

business hours (i.e. UAT)

● Debugging
○ Multiple debug / logging options to suit

● Provider agnostic
○ Cloud native managed service provides 

all support K8s

● Multicloud K8s clusters
○ Centralise dependent containers from 

multiple providers

○ Reduce latency and related 

performance constraints

● Configuration as Code
○ Dynamically scale environments that 

have a mix of shared and dedicated 

services

● Spot Instances / VMs
○ Save costs on fault-tolerant workloads

https://www.pxfuel.com/en/free-photo-qimbh


Increasing rapid release cycles and flexibility in 

cloud environments

https://www.b-c-training.com/bulletin/considering-robotic-process-automation-to-enhance-your-business-resilience-here-are-some-key-considerations/


Foundations of rapid, flexible release cycles in cloud 

environments

● Leverage CI/CD services
○ Automate testing

○ Automate builds

○ Automate deployments

○ Automate everything!

● Environment consistency
○ Scale / Resources

○ Configuration

○ Code

● Simplicity
○ Use multi-tenancy where 

colocation makes sense

○ Smaller release scope

● People
○ Documentation

○ Monitoring and alerts

○ Self organising teams

https://www.b-c-training.com/bulletin/considering-robotic-process-automation-to-enhance-your-business-resilience-here-are-some-key-considerations/


Leverage CI/CD services

● Automate testing
○ Contract vs End-to-End testing

○ Regression testing

● Automate deployments
○ Automatic rollbacks

○ Rolling deployments

● Automate builds
○ Git lifecycle integration

○ Atomic build artifacts

● Automate everything!
○ If you can describe it as a 

repeatable process, it can 

probably be automated

https://www.b-c-training.com/bulletin/considering-robotic-process-automation-to-enhance-your-business-resilience-here-are-some-key-considerations/


Environment consistency

● Scale / Resources
○ HorizontalPodAutoscaler (HPA) 

can reduce scale while maintaining 

consistent resource allocation per 

pod across environments for swift 

bug replication and resolution

● Configuration
○ CaC eliminates the potential for 

environments to fail due to unique 

configuration settings

■ Faster debugging process

■ Fix once, apply everywhere

● Code
○ Leverage a consistent branch naming convention to help 

track atomic build artifacts

○ Use pipelines to catch issues that can impact release 

flow

■ i.e. Cyclomatic complexity, security vulnerabilities, etc.

https://www.b-c-training.com/bulletin/considering-robotic-process-automation-to-enhance-your-business-resilience-here-are-some-key-considerations/


Simplicity

● Use multi-tenancy where 

colocation makes sense
○ Reduce unnecessary service 

maintenance

○ Save on unnecessary 

infrastructure costs

○ Less effort to scale when needed

● Smaller release scope
○ Lean into feature flags

■ Prefer no-op modules over 

conditional statements

○ Reduce cross service 

dependencies in a single release 

where possible

https://www.b-c-training.com/bulletin/considering-robotic-process-automation-to-enhance-your-business-resilience-here-are-some-key-considerations/


People

● Documentation
○ SemVer

○ Automated change logs driven by 

commit messaging

○ Troubleshooting guides help 

reduce delays when common, low 

priority issues are encountered

● Monitoring and alerts
○ Early detection of failures

○ Proactive monitoring allows for 

preventative changes to be 

implemented via IaC or CaC 

keeping pressure off the release 

flow

● Self organising teams
○ Understand the nature of changes being released

■ Reduces downtime when merge conflicts are 

encountered

○ Own the environments depended on for rapid release 

cycles

https://www.b-c-training.com/bulletin/considering-robotic-process-automation-to-enhance-your-business-resilience-here-are-some-key-considerations/


Addressing security, networking, complexity and 

monitoring challenges

https://www.flickr.com/photos/usnavy/7976333980


Security Challenges

1. Pods without NetworkPolicy 

coverage have zero network 

restrictions resulting in reduced 

overall security

2.Kubernetes out of the box 

security solutions are not 

comprehensive

3.Using NodePort increases your 

attack surface 

1. Restrict pod communications by 

writing sensible NetworkPolicies 

and using Role-Based Access 

Control (RBAC)

2. Third party tools and cloud native 

managed service providers 

provide substantial security cover

3. Switching to Ingress is an 

effective way to secure the cluster 

with a single point of entry

Security Recommendations

https://www.flickr.com/photos/usnavy/7976333980


Complexity Challenges

1. Unexpected behaviour within a 

Kubernetes cluster can be difficult 

to track down and fix due to how 

many moving pieces are involved 

under the hood

2. Breaking down monolith services 

into single purpose microservices 

while they are still in active use

1. Leverage software / services that 

perform the diagnostic heavy 

tasks (often powered by AI)

2. Isolate distinct functional 

requirements of the monolith into 

separate microservices

a. Put each microservice on a 

pod in a Kubernetes cluster to 

make it easy to scale and 

implement service discovery

Complexity Recommendations

https://www.flickr.com/photos/usnavy/7976333980


Networking Challenges

1. Network configuration in large 

scale Kubernetes deployments is 

complicated

2. Network security configuration 

complexity can become a 

bottleneck when onboarding new 

team members or debugging 

issues

1. Consider the Pros and Cons of 

available Container Network 

Interfaces (CNIs), and choose 

one or more that address 

deployment requirements with 

simplicity as a primary success 

criteria

2. Clear documentation can help 

speed up onboarding and 

debugging processes

Networking Recommendations

https://www.flickr.com/photos/usnavy/7976333980


Monitoring Challenges

1. Look for solutions that are 

capable of leveraging multiple 

signal types to properly observe 

the status of services and 

infrastructure

2. Use services that can do the 

heavy lifting on processing 

collected observability data so 

teams can focus on diagnostics / 

issue resolution

1. An emphasis on monitoring via 

health check metrics can result in 

critical issues being overlooked

2. At scale it can become a time 

consuming task to sort through 

the sheer volume of observability 

data that is collected

Monitoring Recommendations

https://www.flickr.com/photos/usnavy/7976333980


“A tool or process is only as effective as the 

team using it”

https://commons.wikimedia.org/wiki/File:Scattered_thoughts.svg


Thank You


	Slide 1: Using a managed container service for running and scaling Kubernetes applications in the cloud
	Slide 2: Developing mature DevOps practices to operationalise large scale deployments
	Slide 3: DevOps practices for large scale deployments
	Slide 4: Communication
	Slide 5: Context
	Slide 6: Process
	Slide 7: Tooling
	Slide 8: Combining Kubernetes and cloud native managed services to dynamically scale
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Increasing rapid release cycles and flexibility in cloud environments
	Slide 13: Foundations of rapid, flexible release cycles in cloud environments
	Slide 14: Leverage CI/CD services
	Slide 15: Environment consistency
	Slide 16: Simplicity
	Slide 17: People
	Slide 18: Addressing security, networking, complexity and monitoring challenges
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: “A tool or process is only as effective as the team using it”
	Slide 24: Thank You

