

Zimmer Biomet – our products

"Our mission is to alleviate pain and improve the quality of life for people around the world."

Our Digital Footprint of Orthopaedics

PRE-OPERATIVE CARE

INTRA-OPERATIVE

POST-OPERATIVE CARE

PATIENT OUTCOME

Patient satisfaction
Pain and function scores
Patient mobility

Mock-up for illustration purposes only.

Challenges and opportunities Validation and safety of Al products

- For non-regulated products:
 - Build, test, validate (including redteaming);
 - Launch, seek feedback;
 - Iterate.
- For medical applications:
 - Full risk analysis, including documentation of where risks are mitigated.
 - Full documentation of requirements, then evidence of testing against requirements.

The documentation footprint of regulated industries

Our adherence to various regulations and guidelines generate extensive documentation:

- ISO standards;
- Regulations (FDA, European Medical Device Regulation);
- Government legislation (EU AI Act)

Large-language model technologies can be used in the creation of these documents, as well as to mine these documents to make internal processes more efficient.

"Where have we used a similar component in previous products?"

"Have we had this feedback from regulators before, and how did we deal with it?"

Challenges and opportunities Validation and safety of Al products

What is the role that your Al system is playing?

- "Practicing medicine"?
- Implementing existing protocols on behalf of doctor?

Regulatory and risk implications of this decision.

What if clinician has specified this as treatment, and there are no other issues?

Challenges and opportunities

Data stewardship and ownership

- How can we monitor AI products with the fundamental premise that clinician/patient conversation is confidential?
- How do we balance the needs of multiple stakeholders: patient, care team/surgeon, provider, payor, device manufacturer
 - Who owns the data?
 - What is consented use?

Challenges and opportunities User experience

User experience of AI-based products is critically important

- What do clinicians need to see in order to inform their decision?
- Do they have time to consume that information?
 Where and when in care pathway is this info delivered?
- What do patients want from AI systems?

Regulations placing increasing importance on validating the User Experience.

Stephen Lee, *Jamia Open*, Volume 7, Issue 2, July 2024, ooae035, https://doi.org/10.1093/jamiaopen/ooae035

Reproduced under Creative Commons Attribution License.

Mock-up for illustration purposes only.

Challenges and opportunities User experience

User experience of Al-based products critically important?

- What do clinicians need to see in order to inform their decision?
- Do they have time to consume that information? Where in care pathway is this info delivered?
- What do patients want from AI systems?

Regulations placing increasing importance on validating the User Experience.

7. **Focus Is Placed on the Performance of the Human-Al Team:** Where the model has a "human in the loop," human factors considerations and the human interpretability of the model outputs are addressed with emphasis on the performance of the Human-Al team, rather than just the performance of the model in isolation.

https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles

Challenges and opportunities Getting internal partners on board

Mock-up for illustration purposes only.

Hey Karl, how are you getting on with your recovery?

Thanks - it's tough, I'm in a lot of pain.

- Is it to do with the implant?
- Do we need to treat it as a potential complaint?

Challenges and opportunities Getting internal partners on board

- Using AI in products makes some internal stakeholders' lives more difficult
 - Increase monitoring
 - Documentation
 - Risk
- As an AI function, demonstrate to these groups how AI can improve their work and improve their effectiveness

Key takeaways

Key takeaways

- Orthopaedics is ripe for data-driven innovation using AI.
- Deployment of AI into healthcare requires many additional considerations around risk and privacy.
- All is likely to make the above more complex whilst also making it more efficient.
- Transparency and careful consideration of user experience is critical to both patients, clinicians and multi-disciplinary stakeholders.

References

- 1. Schrednitzki D, Horn CE, Lampe UA, Halder AM. Imageless robotic-assisted total knee arthroplasty is accurate in vivo: a retrospective study to measure the postoperative bone resection and alignment. Arch Orthop Trauma Surg. Jun 2023;143(6):3471-3479. doi:10.1007/s00402-022-04648-2.
- 2. Seidenstein A, Birmingham M, Foran J, Ogden S. Better accuracy and reproducibility of a new robotically-assisted system for total knee arthroplasty compared to conventional instrumentation: a cadaveric study. Knee Surg Sports Traumatol Arthrosc. May 24 2021;29(3):859-866. doi:10.1007/s00167-020-06038-w.
- 3. Emara AK, Zhou G, Klika AK, et al. Robotic-arm-assisted Knee Arthroplasty Associated With Favorable In-hospital Metrics and Exponentially Rising Adoption Compared With Manual Knee Arthroplasty. J Am Acad Orthop Surg. Dec 15 2021;29(24):e1328-e1342. doi:10.5435/JAAOS-D-21-00146
- 4. Bendich I, Kapadia M, Alpaugh K, Diane A, Vigdorchik J, Westrich G. Trends of Utilization and 90-Day Complication Rates for Computer-Assisted Navigation and Robotic Assistance for Total Knee Arthroplasty in the United States From 2010 to 2018. Arthroplasty Today. 2021/10/01/2021;11:134-139. doi:https://doi.org/10.1016/j.artd.2021.08.005
- 5. Maman D, Laver L, Becker R, et al. Trends and epidemiology in robotic-assisted total knee arthroplasty: Reduced complications and shorter hospital stays. Knee Surgery, Sports Traumatology, Arthroscopy. 2024/12/01 2024;32(12):3281-3288. doi:https://doi.org/10.1002/ksa.12353
- 6. Lonner JH, Anderson MB, Redfern RE, Van Andel D, Ballard JC, Parratte S. An orthopaedic intelligence application successfully integrates data from a smartphone-based care management platform and a robotic knee system using a commercial database. International Orthopaedics. 2022/12/12 2022;doi:10.1007/s00264-022-05651-3
- 7. Batailler C, Hannouche D, Benazzo F, Parratte S. Concepts and techniques of a new robotically assisted technique for total knee arthroplasty: the ROSA knee system. Arch Orthop Trauma Surg. 2021 Dec;141(12):2049-2058. doi: 10.1007/s00402-021-04048-y. Epub 2021 Jul 13. PMID: 34255173.
- 8. Lonner JH, Goh GS. Moving beyond radiographic alignment: applying the Wald Principles in the adoption of robotic total knee arthroplasty. Int Orthop. 2023 Feb;47(2):365-373. doi: 10.1007/s00264-022-05411-3. Epub 2022 May 9. PMID: 35532787; PMCID: PMC9877041.
- 9. Hinterwimmer, F., Lazic, I., Suren, C., Hirschmann, M.T., Pohlig, F., Rueckert, D., Burgkart, R. and von Eisenhart-Rothe, R. (2022), Machine learning in knee arthroplasty: specific data are key—a systematic review. Knee Surg Sports Traumatol Arthrosc, 30: 376-388 1795. https://doi.org/10.1007/s00167-021-06848-6
- 10. Lee G, Wakelin E, Randall A, Plaskos C. Can a robot help a surgeon to predict a good total knee arthroplasty?. Bone Joint J. 2021;103-B(6 Supple A):67-73. doi:10.1302/0301-620X.103B6.BJJ-2020-2305.R1

Laboratory and animal testing are not necessarily indicative of clinical results

Disclosure: 7. funded by Zimmer Biomet

CONFIDENTIAL INFORMATION Intended for Industry professional attendees; distribution is prohibited without the express written consent of Zimmer Biomet. ©Zimmer Biomet 2025

Q&A

THANK YOU!

