

NUS-ISS 1981

Vision

Accelerating Digital Excellence

Mission

Developing digital talent through education, applied research, consulting and career services

Trained over

188,000

Digital Leaders & Professionals

8,230
Graduate
Programmes Alumni

Previously known as Institute of Systems Science, we rebranded to NUS-ISS in 2023.

NUS-ISS leads Practice-based Pedagogy

- Learner Success
- Practice-oriented & Application-focused
- Through flexible learning pathways

3 Topics Today

1st

Al supercharges Data Science & Analytics

Al replaces Data Science & Analytics

Copyright National University of Singapore

AI Strategy

No Data Strategy, No Al Strategy

Your AI is only as smart as your worst data source

AI Strategy

Business Impact with Data & Al

- Large amount of data -> Big Data
- Big Data Processing
- Machine Learning Algorithms
- Natural Language Processing(NLP)/LLM's
- Prompt Engineering
- Decision Support Systems (moving from descriptive to prescriptive analytics)
- Automation & Efficiency (MLOps)
- Agentic AI (Colab Data Science Agent)

Data and Analytics Maturity

Data Value Chain, Al Applications

Data stages	Data Collection	Data Processing	Data Storage	Data Analysis & Insights	Predictive & Prescriptive Models	Decision Making
Use of AI (Agentic AI)	 Automate data extraction Data Quality Check Real time data streaming 	 Data Cleaning Schema	 Al-Indexing Data	 Data Discovery Natural language query Data Visualization 	 Predictive analysis Prescriptive analysis Model automation Hyperpersoni zation 	 Chatbot Al decision engines Intelligent process automation
Roles		Data Engineers		Data Scie	entist	

(Applied)
Data/Business Analysts
Business Leaders

New tariffs imposed by the US on selected trading partners: Asia

■ What are the reactions of your organizations?

Shock!

Worried!

I have a plan!

What will likely happen?

New Business

Model?

Supply Chain Overhaul?

Financial
Stress Testing
?

Geopolitical Hedging?

Cost Reduction?

New products?

Diversify Sourcing?

Pricing
Strategy
Adjustments?

Search for new market?

Lobby &

Policy

Advocacy?

Technology & Automation?

Best/Worst Case Scenarios Planning

Uncertainties

Copyright National University of Singapore Accelerating Digital Excellence

Uncertainties

Systems
Dynamic
Business
Planning

Experimentations

Evaluation

Agility

The Core Skills for 2030

Systems Thinking with Data Analytics

Systems thinking is a holistic approach to problem-solving that views business challenges as interconnected systems rather than isolated parts

- **Decode complexity** (e.g., why "quick fixes" often fail)
- Leverage data more effectively (by asking better questions)
- Lead with adaptability in volatile markets

Systems thinking + data turns reactive decision-making into proactive strategy

Problem: Your company faces a sudden 20% cost increase for a critical component. Margin squeezed.

Common Approach:

Cost up 20%

Alternate Sourcing

Systems Thinking:

Delays & Unintended Consequences

Source: MIT

Problem: Your company faces a sudden 20% cost Nusing NUS National University of Singapore increase for a critical component. Margin squeezed.

Step 1: Map the System

- Suppliers (cost, reliability, alternatives)
- Inventory (buffer stock, lead times)
- Production (yield, downtime, substitutes)
- Customers (price sensitivity, demand elasticity)
- Competitors (their sourcing strategies, pricing)

Step 2: Data-Driven Insights

- Analyze **supplier performance data**: Are cost hikes industry-wide or supplierspecific?
- Model demand forecasts: Will passing costs to customers reduce sales volume?
- Simulate **inventory scenarios**: Can we reduce stockouts without overordering?

Problem: Your company faces a sudden 20% cost Notional University of Singapore increase for a critical component. Margin squeezed.

Step 4: Simulate Outcomes

- What if we switch suppliers but face quality delays?
- What if competitors absorb cost hikes to gain market share?

Step 3: Identify Leverage Points

- a. Use data analytics to test alternative materials
- b. Adjust pricing strategically using customer segmentation data
- c. Supplier Collaboration by share demand forecasts with key suppliers
- d. Use machine learning to reduce safety stock where possible

Step 5: Monitor Feedback Loops

Track supplier reliability, customer churn, and inventory turnover in real-time dashboards.

https://www.youtube.com/watch?v=s0qcG-g_Jk0

Because of ?

	Late Fees = Customer Exodus	Doubled Down on Physical Stores	Rejected Netflix for \$50M (2000)	Copycat Strategy, Too Late (2004)	Ignored Streaming Tipping Point (2007+)
Systemic:	Relied on late fees (16% of revenue)	Opened more stores despite rising costs	Prioritized short- term profits over disruptive tech	Launched a DVD-by-mail service but kept stores	Held onto DVDs while Netflix locked in streaming licenses
Missed Data:	Netflix's subscriber growth correlated with Blockbuster's fee complaints	Rising broadband adoption signaled digital shift	Netflix's doubling subscriber growth was a leading indicator	Netflix's retention rates proved subscription models worked better	Streaming traffic eclipsed physical rentals by 2010

Copyright National University of Singapore

