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We find the patterns that matter




Case study: Electronic Medical Records
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Activity based funding for hospital services

ABF context: pricing based on length of stay Example model

= Can we use text information contained in an eMR to
predict higher-than-average-for-DRG LoS?

= What information can these models provide about what
drives LoS over and above existing classification systems?
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Deriving insights from eMR data

An eMR dataset: MIMIC III
= Medical Information Mart for Intensive Care (MIMIC)

= Publicly available, de-identified dataset of 50,000 ICU
patients at the Beth-Israel Deaconess Medical Centre in
Boston, Massachusetts, USA

MIMIC Ill dataset - hospital data
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Modelling longer length of stay (LoS)

We compare 5 models of likelihood of longer than average-for-DRG LoS:

Base + ICD9 Base + ICD9 + text | Base + ICD9 + Al

= Age Base variables Base variables = Base variables = Base variables
= Sex = Top 10ICD9 procedures = D1scharge summary, = Top 10ICD9 procedures = Top 10 ICD9 procedures
= Insurance status and top 10 ICD9 nursing and physician and top 10 ICD9 and top 10 ICD9
diagnoses for each MDC notes diagnoses for each MDC diagnoses for each MDC
= Discharge summary, = Discharge summary,
nursing and physician nursing and physician
notes notes

Structured data only Models include clinical notes analysis
Reoression Regression + Term Frequency / Inverse Document Regression + Bio-Clinical
& Frequency (TF/IDF) model BERT model

Note: All regression models are L1-regularised (LASSO)
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Modelling longer length of stay (LoS)

= Base + ICD9 + text performs best at predicting longer LoS episodes

* Adding text on its own has similar explanatory power to adding ICD9 diagnoses and procedures

Model performance - AUC on a hold-out test set
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What contributes to longer LoS, after controlling for comorbidity?

Text features for MDC 01 - Diseases and disorders of the nervous system
Base + IDC 9 + text model
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What if we “direct” the models for where to look?

Feature engineering can help improve model performance and “direct” the models to put explanatory power

into features we expect to have an impact

Socio-economic and trauma-related
features created from text

alcohol}c disability
accident Lpuse

rpublic safety

smoker violence
5 neglect

soclial wellbeing
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Model performance
AUC for MDC 01 - Nervous system

69.7% 70.2% 73%  75%
] 51% I I
Base Base + ICD9 Base + text
M Model Model + situational features
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How can we use these models to monitor performance?

= Develop models on a broader range of eMR data

= Compare results from multiple facilities to highlight unaccounted-for variation
in case-mix and care

whether best-practice protocols are followed after a procedure

= Must be purpose built, collaborating with clinicians to identify key metrics

= The models can be used to incorporate additional information, such as socio-
economic information, about case mix that isn’t covered by current classification
systems, but does explain differences in efficiency

= Evaluate the models prior to implementation to choose most suitable: don’t use
Al for the sake of Al!

= Monitor the models to ensure they are still performing as the environment changes

= The models can be powerful in identifying patterns in care pathways, e.g. |
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