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Bring everyone the inspiration
to create the life they love
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… powered by a variety of ML applications
learning complex patterns from web scale data of

+460M MAUs and billions of Pins 
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Ads



Ads Product in a nutshell
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Empowering web-scale ML is complicated…
It has a LOT of steps
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ML @ Pinterest
● Large Scale: 

○ 460M+ MAUs, billions of Pins, billions of daily events
● Variety of Use-cases:

○ Recommendation & Ads (Retrieval, Ranking, Blending)
○ Representation Learning
○ Content Quality
○ User Understanding
○ …

● Multiple Product Surfaces:
○ Home-feed, Related Pins, Search, Visual Search, Shopping, Boards, Notifications, …

● Centralized ML Platform
○ Improve foundational components with new capabilities (Feature Store, Inference 

Service, Training Platform)
○ 100s of ML engineers
○ Improve ML developer velocity (Calendar days, engineer days)



Reinventing the wheel
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Model (in-House DSL)

● Nested Feature Definitions

● Team-Specific Raw Data Structures, 
Thrift and FlatBuffers

● Slow Dev Velocity

Feature Format 
(Previously) Raw Data

Custom Feature 
Extraction Logic Model Inference

Custom UDFs (C++)



● Flattened Feature Definitions

● Easily Shareable Across Use-
Cases

● Simplifies Models

Feature Format 
(Now)

Unified Feature Representation (UFR)

DataType (Storage Format)
Primitive (i16/i32/i64, double, bool, string)

Vector (list<i16/i32/i64/double/bool/string>, SparseVector 16/32/64)

Raw Tensor

FeatureType (Interpretation)
Numeric, Categorical/Multi-Categorical, 

Dense/Sparse Numeric, Binary

Unified Feature 
Representation

Standardised Conversion to 
Pytorch/Tensorflow Tensors

Model Inference



● Unified Feature Store: Features 
shared easily across all modeling use-
cases

● Feature Backfilling Capabilities

● Feature Coverage and Alerting (offline 
and online)

● Self-Serve UI: To track feature usage 
across the system

Shared Feature 
Store (Now)

Feature Store (available offline and online)

User

Feature Registry (Java, Python APIs)

“122681” 305 (“country”) UFR

Entity Type Entity Key Feature ID or Key

Backfill 
Training Data

Batch 
Inference

Online 
Inference

Feature 
Catalog



● Version Controlled Models

● Tracks Training Parameters and Evaluation 
Metrics

● Reproducible Models

● Fast Code-Free Deployment

● UI Based Deploy and Rollback

Standardized 
Deployment 

through MLFlow
Trainer

Model Name

Version 1

Version 2

Version 3

Model Artifact

Model Artifact

Model Artifact

Model Registry + MLdeploy

Model Artifact

Scorpion Model Server (SMS)



Model Insights and Analysis

Real-Time Feature Distribution and Coverage

Feature Importance Analysis 
Local (Single Prediction) and Global (model wide)

Model Rollout Monitoring



Training Workflow (Inner loop)Joiner Workflow
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Templatized ML Workflows enable fast experimentation
● Rule of Three applies to ML Ops!

○ Refactoring =>Templatizing workflows. 

● Workflow templates significantly improve ML developer velocity and more…
○ Dataset Management: Caching, GC, discoverability, deduplication, lineage tracking, etc. 
○ Reproducibility: Model = f(config, template)
○ Declarative Configs: experimentation plan 
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EzFlow - ML Workflow templatization system
● Workflow Templating as first-class feature

● Intermediate data lineage tracking
○ Runtime Synchronization, Deduplication
○ Automated dataset management
○ Reproducibility

● Enables domain-specific workflow templates



Iterating on new ideas with Workflow Templates

● Case: 
○ Train a new student model using a different teacher 

model

● Steps (~hours) :
○ [Optional] Make model training script changes
○ Find the template you need
○ Clone configs from your "control" model (model you 

need to beat)
○ Change a few things, and schedule the workflow
○ Workflow runs periodically, refreshes your model
○ Deploy, run online A/B experiment. 

● A few minutes / hours of developer time to push 
new model 



Templatized ML Workflows enable fast experimentation

Training Workflow Template (Inner loop)Joiner Workflow Template
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● 100s Pbs of training data
● ~1500 workflow runs / day
● ~3000 training jobs / day
● Faster dev velocity => More models trained => More improvements



Iterating on new ideas with Workflow Templates

● Case: 
○ Try a new weighting algorithm for each event that takes downstream actions into account

● Steps (~weeks):
○ Write Job

■ Write a new Spark job in scala (e.g. need heavy row-wise operations)
■ Kick it off until it works
■ Write Unittest
■ Integration Test, data validation

○ Integrate with workflow template
■ Add a new airflow operator, and add if/else logic to the workflow template
■ Unittest workflow template
■ Integration Test
■ Land

○ Go to meetings between steps…
○ Kick off workflows using the templates (Same as before)



Hidden cost of pipelines - Scale first, learn last

● What's happening here? - Classic challenge with templating
○ ML changes really fast, and templates inherently reflect our understanding of the past
○ Reproducibility comes at the cost of dev-velocity!

■ 100X variance in developer velocity (Minutes/Hours -> Weeks)
○ Scale First, Learn Last

● Where were the bottlenecks?
○ Too many languages (Python, Scala, Java, Cpp, SQL, ..)
○ Too many runtimes / Frameworks (Airflow, Spark, PyTorch, In-house libs, …)
○ Code reviews
○ Build system
○ Meeting
○ Development is not interactive!

● Renaissance ML engineers move fast. Others move very slow. Bad for the business.



Model Iteration 

● Model architecture became standardized with common building 
blocks e.g. transformers. 

● Modern GPUs and training frameworks has made the training time 
much shorter and only account for a small portion of the total 
developer time



ML Dataset Iteration

● Achieve great improvement with the right dataset preparation. 
○ Sampling strategies
○ Labelling
○ Weighting
○ Batching inference for transfer learning and distillation
○ Feature backfilling

● Requires lots of iterations to find the right combinations
● Dataset Iteration at this scale is Slow!

○ Opportunities for optimization!



Engineers start to move data processing in 
to the trainer to address the challenges in 
the workflow pattern

● Easy to iterate, All done in one 
framework

● Low Engineer-days cost: Streaming 
Pipeline: feedback are immediate

● Low Calendar-days cost

25

Last-Mile Processing in Trainer



● Data processes cannot scale beyond local 
machine.

● When adding more data processing workload, 
cpu utilization grows faster than gpu utilization 
causing GPU to be underutilized.

26

Horizontal Scaling is not 
elastic. Only provide fixed 
CPU/GPU resource ratio

Adding more data 
processing shift the 
pressure from GPU to CPU

Challenges



Adding more data processing workload on the trainer inevitably reduce the overall training 
throughput. 
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Challenges



● Distributed Processing: 
○ Able to efficiently parallelize large scale data processing across multiple 

nodes
● Heterogeneous Resource Management:

○ Managing both GPU and CPU, ensuring workloads are scheduled on the 
most efficient hardware

● High Dev Velocity: 
○ Everything should be in a single framework.

28

Ray fulfills all these requirements. In addition, it presents a unique 
opportunity to provide engineers a unified AI Runtime for all the 
MLOps components

Three Key Requirements



Overview of our training pipeline with Ray:
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How ML is done in Pinterest Today!
In Pinterest , we built an unified, 
Pytorch-based ML framework that 
provides:

● CICD & Docker image as a 
service

● Standardized MLOps integration 
● Reusable building blocks shared 

across multiple teams, use cases. 
(e.g. Dataset loader, Torch 
modules, training loop) 

● 95% of Training Jobs at Pinterest 
are built on top of this framework.

See our blog post for detail!
30

https://medium.com/pinterest-engineering/mlenv-standardizing-ml-at-pinterest-under-one-ml-engine-to-accelerate-innovation-e2b30b2f6768
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