
MLOps behind Ads Ranking @
Pinterest

October 9, 2023

Aayush Mudgal
Modern DevOps Melbourne

2© 2022 Pinterest. All rights reserved.

Bring everyone the inspiration
to create the life they love

3© 2022 Pinterest. All rights reserved.

… powered by a variety of ML applications
learning complex patterns from web scale data of

+460M MAUs and billions of Pins

Homefeed

Ads

Search

Related
Pins

Visual
Search

Unhealthy
Content Detection

Content
Understanding

Image
Understanding

Shopping

4© 2022 Pinterest. All rights reserved.

Ads

Ads Product in a nutshell

Marketing Goal Bid Strategy Predictions

Awareness

Max Bid

Image

Creative Type

Consideration
/ Clicks

Conversion

Good Clicks

Clicks

Hides

Saves

Relevance

Checkout

Video View

Video

Auto Bid

Collections

Surfaces

Home
Feed

Search

Related
Pins

Managing Complexity

6© 2023 Pinterest. All rights reserved.

2014 2017 2018 2020

First ML
model

GBDT
Model + LR

Neural Network
Model (Deep

and Wide)*

Deep Multitask
NN model

Transformer
Sequence

2021 2022 2022

Attention
Sequence

PinnerFormer

Native Tensorflow Serving MLEnv &
Pytorch

Empowering web-scale ML is complicated…
It has a LOT of steps

ML code

Feature Extraction

Data
Collection

Configuration

Data
Verification

Analysis Tools

Machine
Resource
Management

Process
Management Tools

Serving
Infrastructure

Monitoring

ML @ Pinterest
● Large Scale:

○ 460M+ MAUs, billions of Pins, billions of daily events
● Variety of Use-cases:

○ Recommendation & Ads (Retrieval, Ranking, Blending)
○ Representation Learning
○ Content Quality
○ User Understanding
○ …

● Multiple Product Surfaces:
○ Home-feed, Related Pins, Search, Visual Search, Shopping, Boards, Notifications, …

● Centralized ML Platform
○ Improve foundational components with new capabilities (Feature Store, Inference

Service, Training Platform)
○ 100s of ML engineers
○ Improve ML developer velocity (Calendar days, engineer days)

Reinventing the wheel

Feature
Pipeline &

Trainer

Serving

Logging

Use Case A

Feature
Pipeline &

Trainer

Serving

Deployment

Monitoring

Logging

Use Case B

Feature
Pipeline &

Trainer

Serving

Deployment

Logging

Use Case C

Feature
Pipeline &

Trainer

Serving

Monitoring

Logging

Use Case D

Feature
Pipeline &

Trainer

Serving

Monitoring

Use Case E

Model (in-House DSL)

● Nested Feature Definitions

● Team-Specific Raw Data Structures,
Thrift and FlatBuffers

● Slow Dev Velocity

Feature Format
(Previously) Raw Data

Custom Feature
Extraction Logic Model Inference

Custom UDFs (C++)

● Flattened Feature Definitions

● Easily Shareable Across Use-
Cases

● Simplifies Models

Feature Format
(Now)

Unified Feature Representation (UFR)

DataType (Storage Format)
Primitive (i16/i32/i64, double, bool, string)

Vector (list<i16/i32/i64/double/bool/string>, SparseVector 16/32/64)

Raw Tensor

FeatureType (Interpretation)
Numeric, Categorical/Multi-Categorical,

Dense/Sparse Numeric, Binary

Unified Feature
Representation

Standardised Conversion to
Pytorch/Tensorflow Tensors

Model Inference

● Unified Feature Store: Features
shared easily across all modeling use-
cases

● Feature Backfilling Capabilities

● Feature Coverage and Alerting (offline
and online)

● Self-Serve UI: To track feature usage
across the system

Shared Feature
Store (Now)

Feature Store (available offline and online)

User

Feature Registry (Java, Python APIs)

“122681” 305 (“country”) UFR

Entity Type Entity Key Feature ID or Key

Backfill
Training Data

Batch
Inference

Online
Inference

Feature
Catalog

● Version Controlled Models

● Tracks Training Parameters and Evaluation
Metrics

● Reproducible Models

● Fast Code-Free Deployment

● UI Based Deploy and Rollback

Standardized
Deployment

through MLFlow
Trainer

Model Name

Version 1

Version 2

Version 3

Model Artifact

Model Artifact

Model Artifact

Model Registry + MLdeploy

Model Artifact

Scorpion Model Server (SMS)

Model Insights and Analysis

Real-Time Feature Distribution and Coverage

Feature Importance Analysis
Local (Single Prediction) and Global (model wide)

Model Rollout Monitoring

Training Workflow (Inner loop)Joiner Workflow

Typical ML Training Workflow

Join Events
and Features

Serving
Logs

Action
Logs

Enrich
Features

Feature
Store

Sample / Split Reward /
Weight

Feature Stats
Validation

Model
Training

Offline Eval /
Inference

Feature
Importance

Model
Promotion

Feature Stats
Validation

Model
Store

Templatized ML Workflows enable fast experimentation
● Rule of Three applies to ML Ops!

○ Refactoring =>Templatizing workflows.

● Workflow templates significantly improve ML developer velocity and more…
○ Dataset Management: Caching, GC, discoverability, deduplication, lineage tracking, etc.
○ Reproducibility: Model = f(config, template)
○ Declarative Configs: experimentation plan

Training Workflow Template (Inner loop)Joiner Workflow Template

Join Events
and Features

Serving
Logs

Action
Logs

Enrich
Features

Feature
Store

Sample / Split Reward /
Weight

Feature Stats
Validation

Model
Training

Feature
Importance

Offline Eval /
Inference

Model
Promotion

Feature Stats
Validation

Model
Store

Config Config

EzFlow - ML Workflow templatization system
● Workflow Templating as first-class feature

● Intermediate data lineage tracking
○ Runtime Synchronization, Deduplication
○ Automated dataset management
○ Reproducibility

● Enables domain-specific workflow templates

Iterating on new ideas with Workflow Templates

● Case:
○ Train a new student model using a different teacher

model

● Steps (~hours) :
○ [Optional] Make model training script changes
○ Find the template you need
○ Clone configs from your "control" model (model you

need to beat)
○ Change a few things, and schedule the workflow
○ Workflow runs periodically, refreshes your model
○ Deploy, run online A/B experiment.

● A few minutes / hours of developer time to push
new model

Templatized ML Workflows enable fast experimentation

Training Workflow Template (Inner loop)Joiner Workflow Template

Join Events
and Features

Serving
Logs

Action
Logs

Enrich
Features

Feature
Store

Sample / Split Reward /
Weight

Feature Stats
Validation

Model
Training

Feature
Importance

Offline Eval /
Inference

Model
Promotion

Feature Stats
Validation

Model
Store

Config Config

● 100s Pbs of training data
● ~1500 workflow runs / day
● ~3000 training jobs / day
● Faster dev velocity => More models trained => More improvements

Iterating on new ideas with Workflow Templates

● Case:
○ Try a new weighting algorithm for each event that takes downstream actions into account

● Steps (~weeks):
○ Write Job

■ Write a new Spark job in scala (e.g. need heavy row-wise operations)
■ Kick it off until it works
■ Write Unittest
■ Integration Test, data validation

○ Integrate with workflow template
■ Add a new airflow operator, and add if/else logic to the workflow template
■ Unittest workflow template
■ Integration Test
■ Land

○ Go to meetings between steps…
○ Kick off workflows using the templates (Same as before)

Hidden cost of pipelines - Scale first, learn last

● What's happening here? - Classic challenge with templating
○ ML changes really fast, and templates inherently reflect our understanding of the past
○ Reproducibility comes at the cost of dev-velocity!

■ 100X variance in developer velocity (Minutes/Hours -> Weeks)
○ Scale First, Learn Last

● Where were the bottlenecks?
○ Too many languages (Python, Scala, Java, Cpp, SQL, ..)
○ Too many runtimes / Frameworks (Airflow, Spark, PyTorch, In-house libs, …)
○ Code reviews
○ Build system
○ Meeting
○ Development is not interactive!

● Renaissance ML engineers move fast. Others move very slow. Bad for the business.

Model Iteration

● Model architecture became standardized with common building
blocks e.g. transformers.

● Modern GPUs and training frameworks has made the training time
much shorter and only account for a small portion of the total
developer time

ML Dataset Iteration

● Achieve great improvement with the right dataset preparation.
○ Sampling strategies
○ Labelling
○ Weighting
○ Batching inference for transfer learning and distillation
○ Feature backfilling

● Requires lots of iterations to find the right combinations
● Dataset Iteration at this scale is Slow!

○ Opportunities for optimization!

Engineers start to move data processing in
to the trainer to address the challenges in
the workflow pattern

● Easy to iterate, All done in one
framework

● Low Engineer-days cost: Streaming
Pipeline: feedback are immediate

● Low Calendar-days cost

25

Last-Mile Processing in Trainer

● Data processes cannot scale beyond local
machine.

● When adding more data processing workload,
cpu utilization grows faster than gpu utilization
causing GPU to be underutilized.

26

Horizontal Scaling is not
elastic. Only provide fixed
CPU/GPU resource ratio

Adding more data
processing shift the
pressure from GPU to CPU

Challenges

Adding more data processing workload on the trainer inevitably reduce the overall training
throughput.

27

Challenges

● Distributed Processing:
○ Able to efficiently parallelize large scale data processing across multiple

nodes
● Heterogeneous Resource Management:

○ Managing both GPU and CPU, ensuring workloads are scheduled on the
most efficient hardware

● High Dev Velocity:
○ Everything should be in a single framework.

28

Ray fulfills all these requirements. In addition, it presents a unique
opportunity to provide engineers a unified AI Runtime for all the
MLOps components

Three Key Requirements

Overview of our training pipeline with Ray:

29

Training Workflow (Inner loop)Joiner Workflow

Join Events
and Features

Serving
Logs

Action
Logs

Enrich
Features

Feature
Store

Sample / Split Reward /
Weight

Feature Stats
Validation

Model
Training

Offline Eval /
Inference

Feature
Importance

Model
Promotion

Feature Stats
Validation

Model
Store

Last-Mile Processing with Ray

How ML is done in Pinterest Today!
In Pinterest , we built an unified,
Pytorch-based ML framework that
provides:

● CICD & Docker image as a
service

● Standardized MLOps integration
● Reusable building blocks shared

across multiple teams, use cases.
(e.g. Dataset loader, Torch
modules, training loop)

● 95% of Training Jobs at Pinterest
are built on top of this framework.

See our blog post for detail!
30

https://medium.com/pinterest-engineering/mlenv-standardizing-ml-at-pinterest-under-one-ml-engine-to-accelerate-innovation-e2b30b2f6768

Acknowledgement
Thanks for XFN collaboration with entire
Ads Quality, Machine Learning Platform,
Core Engineering Team, Ads Infra,
Advanced Technology Group, Content
and User Engineering teams

© 2022 Pinterest. All rights reserved.

