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Interpretability or Explainability?

• Interpretability refers to the ability to understand how a model 
works internally and how it arrives at its predictions or decisions. An 
interpretable model has transparent internal mechanics that can be 
comprehended and reasoned about by humans. This is typically 
achieved by using inherently interpretable models such as linear 
regression, decision trees, or rule-based systems.

• Explainability refers to the ability to provide explanations for a 
model's predictions or decisions after the fact, even if the 
internal mechanics of the model are not fully interpretable. 
Explanations can be generated using various techniques, even for 
complex "black-box" models like neural networks or ensemble 
models.
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Guidotti et al. (2018) in their 

survey paper on explainable AI 

state: "Interpretability is the ability 

to explain or to present in 

understandable terms to a 

human." "Explainability refers to 

the details and reasons a 

machine can provide to make its 

functioning understandable to 

humans."



The importance of model explainability in financial services
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• Regulatory requirements for transparency

• GDPR:  Article 22 provides individuals with the "right to explanation" for decisions made by automated 

systems that significantly affect them. This highlights the need for explainable AI systems.

• EU AI Act: High-risk AI systems must be designed with techniques that enable their operation to be 

"sufficiently transparent to enable interpretation of the system's outputs by humans.”

• Trust and Accountability: When models are used for critical decisions (e.g., lending, healthcare, criminal 

justice), stakeholders need to trust the model's decisions and hold it accountable. Treating it as a black box can 

undermine trust and raise ethical concerns.

• User Acceptance: End-users are more likely to accept and adopt models if they can understand the 

rationale behind the model's decisions, rather than blindly relying on opaque scores.

• Domain Knowledge Integration: Incorporating domain expertise and aligning model behaviour with 

human reasoning can lead to more reliable and trustworthy models, especially in high-stakes domains.

• Debugging and Improving Models: Understanding how a model works and its reasoning process can 

help identify biases, errors, or areas for improvement, ultimately leading to better models.



Model explainability to gain customer trust

• Loan application explanations:
• A customer applies for a loan but is denied by the bank's ML model.
• Providing counterfactual explanations, such as "If your annual income were $X higher, and your 

credit score improved by Y points, you would likely be approved," builds trust by showing 
transparency and giving actionable feedback.

• Investment portfolio recommendations:
• A wealth management firm uses an ML model to recommend investment portfolios to clients based 

on their risk profiles and financial goals.
• Visualizing feature importance and decision boundaries helps explain why certain portfolios were 

recommended, increasing clients' confidence in the firm's expertise.

• Fraud detection in transactions:
• A bank uses an ML model to flag potentially fraudulent transactions.
• Providing example-based explanations, such as "This transaction was flagged as suspicious 

because it shares patterns with other confirmed fraud cases involving X, Y, and Z," helps customers 
understand the reasoning behind the alert and prevents loss of trust due to false positives.
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Explainability as a reputational risk prevention

Credit Card Gender Discrimination: In 2019, multiple reports surfaced that Apple's AI system for 
determining credit limits for the Apple Card was exhibiting gender discrimination, with lower limits approved 
for women compared to men with similar credit profiles. The black-box nature of the algorithm made it 
difficult to pinpoint bias introduction. Had Apple employed interpretability techniques like SHAP to explain 
each credit limit decision, the drivers of the discrimination may have been more easily auditable and 
mitigated.

Money Laundering Detection  In 2018, ING Bank was fined over $900 million for failing to properly 
monitor customer transactions and catch instances of money laundering. Their automated transaction 
monitoring system suffered from the "black box" problem, making it difficult to ascertain precisely what 
factors were triggering or missing certain suspicious activity alerts. More interpretable detection models that 
could surface the reasoning behind labeling transactions as legitimate or risky could have allowed ING to 
identify blindspots or biases in their anti-money laundering processes.

NLP Model Failures In 2021, JPMorgan Chase reported issues with their AI models for processing 
incoming emails and communications. The lack of interpretability made it difficult to precisely diagnose why 
certain models were breaking down, mishandling context in conversations, or exhibiting biased language 
patterns. This led to disruptions in client communication flows and highlighted the importance of having more 
transparent NLP systems, especially for sensitive client communications.
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How to facilitate better explainability?

Use only simpler algorithms as they are generally considered more inherently 
interpretable than others:

• Linear/Logistic Regression: These models have a simple linear form that makes the relationship 
between input features and output easy to understand and explain. The coefficients directly represent the 
feature importances.

• Decision Trees: Decision trees split the data based on interpretable rules derived from the features. The 
tree structure and path to each prediction are human-readable and align with how humans make 
decisions.

• Rule-based Classifiers/Scoring: Rules like "IF condition THEN prediction" directly encode expert 
knowledge and reasoning in an interpretable way.

• K-Nearest Neighbours (KNN): KNN makes predictions by finding the closest examples in the training 
data, which can provide example-based explanations.

 Even these interpretable models can become opaque as they increase in complexity 
(e.g., very deep trees, ensembles).  And they tend to be less accurate, driving a trade-offs 
between accuracy and explainability
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Techniques for enhancing explainability during development 

• Monotonicity constraints: Enforcing that the model's predictions increase or decrease 
monotonically with respect to certain input features. This can be desirable when domain 
knowledge suggests a specific monotonic relationship (e.g., higher income should not 
decrease the chance of loan approval).

• Feature sparsity: Regularizing the model to use only a sparse subset of input features, 
making the important factors more interpretable.

• Model distillation: Training an inherently interpretable model (e.g., decision tree) to mimic the 
predictions of a more complex black-box model, essentially distilling the knowledge into an 
interpretable form.

• Attention regularization: In deep learning models (e.g. sentiment analysis), regularizing the 
attention mechanisms to encourage sparse and interpretable attention patterns.

• Prototype learning: (e.g. image recognition) Training models to learn prototypical examples 
that represent different classes or predictions, making the model's decision boundaries more 
interpretable.

7



Techniques for enhancing explainability, post model development, at 
model level

• Feature importance methods: One of the most widely used techniques to understand the overall 
influence of features in a model is to calculate global feature importance scores. These scores provide a 
summary of how much each feature contributes to the model's predictions across the entire population or 
dataset. For ML, a common approach is to use Mean Decrease in Impurity (MDI) or Mean Decrease in 
Accuracy (MDA) as global feature importance metrics. These metrics calculate the average decrease in 
the impurity/accuracy of the model when a particular feature is used. 

• Accumulated Local Effects (ALE) plots: Plot the changes in predictions caused by varying a 
single feature across the distribution of all other features. They are designed to explicitly handle correlated 
features and provides a more accurate representation of the feature's effect in the context of the full data 
distribution than Partial Dependence Plots (PDPs) and Individual Conditional Expectation (ICE) plots but 
require more computing power.
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Techniques for enhancing explainability, post model development, at 
case level

• Example-based Explanations: Some techniques, like MMD-Critic, can identify the most similar 
examples from the training data to the case being explained. If the most similar examples in the training 
data exhibit different patterns for some features (like multiple cash deposits below the threshold)  it 
suggests that the model may have used those patterns to make the high-risk prediction for the case.

• Local Interpretable Model-agnostic Explanations (LIME): LIME works by approximating the 
model's behaviour locally around the instance being explained (the transaction) using an interpretable 
model like a linear regression. By examining the coefficients of the local linear model, we can see which 
features had the highest positive or negative impact on the prediction score, potentially revealing if 
factors like cash deposit patterns, high-risk entities, or business activity mismatches were influential.

• SHAP: computes Shapley values, which attribute each prediction to the contributing features. For a 
single instance or prediction, it can generate Feature importance values (Indicating how much each 
feature contributed (positively or negatively) to the specific prediction), visual explanations (such as 
waterfall plots, showing the cumulative effect of each feature on the prediction)

• Counterfactual Explanations: We can generate counterfactual explanations, which show the 
minimum changes to the transaction features that would result in a different prediction (e.g., low-risk 
instead of high-risk). 
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Future directions and open challenges
LLM Interpretability

• Attention Visualization: Many LLMs, particularly those based on the Transformer architecture, use attention 
mechanisms to weigh the importance of different input tokens when generating output. By visualizing the 
attention patterns, we can gain insights into which parts of the input the model focused on when generating a 
particular response. This can help explain the reasoning behind the model's output.

• Rationale Generation: In this approach, the LLM is trained to not only generate the final response but also to 
provide a rationale or explanation for that response. This can be achieved by fine-tuning the LLM on a dataset 
that includes both the desired output and the corresponding rationale or explanation.

• Counterfactual Explanations: Similar to the techniques used for other machine learning models, they can be 
generated for LLMs by perturbing the input and observing how the model's output changes. This can help 
identify the input features or tokens that were most influential in the model's response.

• Concept Activation Vectors (CAVs): This technique involves identifying the directions in the model's 
embedding space that correspond to specific high-level concepts or attributes. By analysing the activation 
patterns of these concept vectors, we can understand which ones influenced the model's output the most.

• Confidence Scoring: LLMs can be trained to produce confidence scores or uncertainty estimates along with 
their generated responses. These scores can provide insights into how confident the model is about its output, 
which can be useful for determining when additional explanations or clarifications might be needed.

• Human-in-the-Loop Explanations: This can involve having the LLM generate an initial response, which is then 
reviewed and explained by a human expert in the domain. The human-provided explanations can be used to 
fine-tune the LLM or to build datasets for training interpretable models.

1.
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Future directions and open challenges: 
Measuring and evaluating explainability 

• Measuring and evaluating explainability is an active area of research. There is no universally 
agreed-upon metric or threshold for what constitutes an acceptable level of explainability, as it is a subjective 
and context-dependent concept. However, there are some frameworks for assessing the quality and 
effectiveness of explanations generated by machine learning models.

• Human evaluation studies: A common approach where people (e.g., domain experts, end-users) are 
presented with the explanations generated by different techniques and asked to rate their quality, completeness, 
and understandability. These evaluations can be based on specific criteria or tasks, such as predicting the 
model's behaviour based on the explanation or identifying potential biases or errors.

• Quantitative metrics combination: capturing different aspects of explainability, such as:

1. Fidelity: How accurately the explanation reflects the true behaviour of the model.

2. Consistency: Whether similar inputs produce similar explanations.

3. Sparsity: How concise and focused the explanation is, highlighting only the most relevant features.

4. Stability: How robust the explanation is to small perturbations in the input or model parameters.
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