Generative AI for Text Summarization using LLMs

 $\bullet \bullet \bullet$

April, 2024

Presenter

Gagandeep Dua, Vice President JPMorgan Chase

Agenda

- 1. LLM App Project Lifecycle
- 2. Text Summarization Use Case and Scope
- 3. Selecting the Right LLM
- 4. Training & Adaptation
 - a. Summarization using Foundational Models
 - b. Fine Tuning
 - c. Evaluation using Rouge Metrics
- 5. Q&A

LLM App Project Lifecycle

Define the Use Case , Scope

Select right LLM

Deployment and Monitoring

Training & Adaptation

- Pretraining
- Prompt Engineering
- Fine Tuning
- Evaluation and Iteration

Define the Use Case and Scope

LLM Use Cases

- 1. Text / Content Generation
- 2. Text Summarization
- 3. Language Translation
- 4. Text Classification
- 5. Question Answering
- 6. Named Entity Recognition
- 7. Automated Text Summarization

Scope of Text Summarization

- 1. Research Reports
- 2. Blogs
- 3. Financial Statements
- 4. Dialogues
- 5. News
- 6. Large Documents
- 7. Domain Finance, Legal, etc.

Selecting the Right LLM

Encoder Only

- Text Classification
- Sentiment Analysis
- Named Entity Recognition
- BERT
- DistilBERT
- RoBERTa

Decoder Branch

- Text Completion
- Text Generation
- Translation
- Q&A
- GPT Family
- Jurassic
- LLaMA

Encoder / Decoder

- Translation
 - Text Summarization
- Question & Answering
- T5
- Pegasus
- BART

Training & Adaptation: Summarization using Foundational 3 Models Sandra: Hey Louis, have you had a chance to work with Hugging Face for NLP tasks? Louis: Yes, I've been experimenting with their models for text generation. It's been quite impressive. Sandra: That's great to hear! Which model have you found most useful? Louis: I've been using GPT-3 for various natural language processing tasks. It's incredibly versatile. Sandra: Interesting! I've been exploring BERT for sentiment analysis. Have you tried it? Dialogue Louis: Not yet, but I've heard good things about BERT's performance for classification tasks. How's your experience been? Sandra: It's been excellent so far. BERT's pre-trained embeddings are really helpful for understanding text semantics. Louis: Sounds promising. We should collaborate on some projects using these models! Sandra: Absolutely! Let's discuss some ideas and get started soon. Louis: Sounds like a plan. Looking forward to it! Sandra asks Louis about Hugging Face for NLP. **Reference Summary** Louis praises their text generation. Sandra talks BERT for sentiment analysis. Louis suggests collaboration. They plan to start soon. pipe = pipeline("summarization", model="google/pegasus-cnn dailymail") Loading Pegasus pipe out = pipe(dialogue) Model print("Summary:") Summary: I've been experimenting with Hugging Face for NLP tasks. Generated Summary I've been using GPT-3 for various natural language processing tasks. using Pegasus I've heard good things about BERT's performance for classification tasks. Generated Summary: Generated Summary Louis: i've been using GPT-3 for various natural language processing tasks. he says pre-trained embeddings are really helpful for understanding text semantics. using T5-Large "let's collaborate on some projects using these models!"

Training & Adaptation: Fine Tuning Pegasus with Samsum Dataset

Set Configuration Parameters	<pre>from transformers import TrainingArguments, Trainer training_args = TrainingArguments(output_dir='pegasus-samsum', num_train_epochs=1, warmup_steps=500, per_device_train_batch_size=1, per_device_eval_batch_size=1, weight_decay=0.01, logging_steps=10, push_to_hub=False, evaluation_strategy='steps', eval_steps=500, save_steps=1e6, gradient_accumulation_steps=16)</pre>
Setting Trainer	<pre>trainer = Trainer(model=model, args=training_args,</pre>
Generated Summary	Generated Summary: Louis has been experimenting with Hugging Face for NLP tasks. He has been using GPT-3 for various natural language processing tasks. Sandra has been exploring BERT for sentiment analysis.
Reference Summary	Sandra asks Louis about Hugging Face for NLP. Louis praises their text generation. Sandra talks BERT for sentiment analysis. Louis suggests collaboration. They plan to start soon.

3

? Text Summarization Use Cases - Which you'll experiment?

- 1. Research Reports
- 2. Blogs
- 3. Financial Statements
- 4. Dialogues
- 5. News
- 6. Large Documents
- 7. Domain Finance, Legal, etc.

Thank You !!

APPENDIX

Encoder-Decoder Transformer Architecture

- 1. Input text is tokenized and converted to token embeddings
- 2. Token embeddings combined with Positional embeddings
- Input tokens + Positional encodings are 3. passed to Multi-headed self-attention layer.
- Multi-head Attention Layer encodes 4. each word 's relationship with every other word in the same sentence, paying more attention to the most relevant ones.
- Encoder's output is fed to each decoder 5. layer

2

