ML-OPs - OPERATIONALIZATION OF MODELS

A NEW OUTLOOK
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WHO IS PELMOREX CORP?
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e Canada’s 4th largest digital
network across desktop and
mobile

e  World’s 3rd-largest weather
information provider

e Rapid growth in Al/ Data Analytics
internally and for B2B customers
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SNAP SHOT OF THE BUSINESS PROBLEM
WEATHER AFFECTS HOW WE PURCHASE!

Visualization of the Impact a Hurricane on CPG Sales @-0
(Peanut Butter) J
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WEATHER DRIVEN DEMAND

WEATHER CORRELATION
o SALES+ WEATHER @STORE
WEATHER LOCAL IMPACT @)
£ @ WEATHER
Seasonal SOURCE
Seasonal Seasonal Average Temp .
gﬁrage_“ m average Ch@ge by 2 Deg

WEATHER DRIVEN DEMAND

- - e Breadth and Depth
Breadth = % stores
Depth = % sales impact &
e weather frequency occurrence

WEATHER DRIVEN DEMAND PREDICTION °
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END USER TOOL FOR B2B CUSTOMER

Next 14 Days Trend O, Search a Store ~ FANS v ALLPRODUCTS v ¥ EXPORT

o Historical vs Predicted Comparison Zop weather contributor in the next 14 @ Top weather contributor in the next 14 (2]
ays

days
14793 vs 9997

Historical & Predicted Revenue Trend
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EXPLAINABLE Al - WHICH PRODUCTS HAVE WEATHER IMPACT

Temperature

. Lower than normal
@ Higher than normal

<-20

® 205

Temperature Change

Weather Condition

Store:

Sales Impact:

Weather Condition:

Weather Condition Value:
Weather Condition Frequency:
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ML OPS - CIRCLE OF LIFE

Monitor model @ @ E$128 e 5] ‘ Define business use cases
Y
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Operationalize model o
M
Deployment Phase .

Plan for deployment e Iterate
on approach
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e Data exploration

Discovery Phase

Is developing a model for
this use case feasible?

e Select algorithm
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Present results ° 7 - N Data pipeline and feature
v, ’ . engineering
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ML OPS PHASE
THROUGH THE LENS OF WEATHER DRIVEN DEMAND

/Accuracy over time

. Quality drop detected!

Week 1 Week 2

Share of drifting features

Monitor model @ o Define business use cases
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IN PRODUCTION - ML IS ONLY A

SMALL PART OF THE SYSTEM
Process
Management Tools
Data
Configuration Collection
@ 4 \..
Serving . e @ @ £ Monitoring
Infrastructure o3» RAY
Machine Data
Resource Verification
Management
m Feature Extraction
Code Analysis Tools HEOL
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Source: Sculley et al.: Hidden Technical Debt in Machine Learning Systems



ML OPS - TRANSITION

Model
validation

Staging/pre-production/production environments

Performance monitoring

Q



DATA SCIENCE -> PIPELINES ->

Parameter Set: A

Model Trained
Data Model SEEELC M ——  Model A

Preparation Training Validation

Parameter Set: B

Model Trained
Data Model SEENOELCM ——  Model B

Preparation Training Validation

Parameter Set: C

Model
Model Evaluation and
Training Validation

Trained

Dat
aa Model C

Preparation

Parameter Set: D

Data Model G

Preparation Training

Evaluation and
Validation

Model
Performance ﬂ
comparison

THE BIRTH OF THE FULL
STACK DATA SCIENTIST




PIPELINES IN ACTION

Graph Run output Config
Feature engineering . Deploy for serving
Training models
in parallel
Data pre-processing l Score on test set and
and validation pick best model
Tensorflow-Wide- []
> and-Deep '—]
l [ System and concept overview [ l
v i |
PreProcess (] FeatureTransforms 9‘ XGBoost-GBT < ModelVvalidation [} PushToServing <
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Tensorflow-CNN [}
[
WDD PIPELINE
prepare_ generate
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. " . climatolog weather_ L q weather_
prep business dimension . statistics intermed xgh xgh
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DEV OPS VS ML OPS

ML TRAINING SPECIFIC ISSUES

e Not enough time on data selection
° Insufficient Feature Engineering
e Different data in Live model

Vaidate
sgarnt

w Validate Data, Schema, Models

Consider Whole ML Training Pipeline

Continuous

Monitor, Retrain, Serve Model




ML OPS MATURITY
WHERE ARE YOU?




HOW DO YOU SCALE YOUR ML FOR
MODELS AND DATA?

WDD SCALING CHALLENGE 0200
% B gp

Thousands of stores, hundreds of Products at POS...

Choud
Trained Trained Trained DataPiow
Model 1 Model 2 Model n WIP-TRAIN-BATCH
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Accuracy over time

MODELS IN PRODUCTION

OTHER KEY ELEMENTS

—_— T )

P Quality drop detected!
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Week 1 Week 2

Week 3 Week 4

Share of drifting features

Y Data drift detected!

Week 1 Week 2

11 EVIDENTLY Al

Week 3 ‘ Week 4
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ML TOOLS

0

Kubeflow

miflow @i

AND OTHERS....
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SUMMARY - THE NEW ML-OPS WORLD

MODELLING
&
PREDICTION

JUPYTER
EXPERIMENTS

ALGORITHMS/
MODELS

MODEL KPI

CONTINUOUS
IMPROVEMENT
PRODUCTION

D

,,..
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PIPELINES

FULL STACK
DATA SCIENCE

CONTINUOUS
BUSINESS VALUE
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Thank You

BALA GOPALAKRISHNAN
CHIEF DATA OFFICER,
PELMOREX CORP.

bgopalakrishnan@pelmorex.com
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