

HOW TO PREPARE FOR QUANTUM Computing with today's Solutions

Daniel Sutherland Regional VP, ANZ

© 2024 DigiCert. All rights reserved.

QUANTUM COMPUTING HAS MONUMENTAL POTENTIAL

1000s of times faster Accelerate discovery and innovation

THE QUANTUM EFFECT ON TODAY'S CRYPTOGRAPHY

Туре	Algorithm	Key Strength Classic (bits)	Key Strength Quantum (bits)	Quantum Attack	
Asymmetric	RSA 2048	112		Shor's Algorithm	
	RSA 3072	128	0		
	ECC 256	128	0		
	ECC 521	256			
Symmetric	AES 128	128	64	Grover's Algorithm	
	AES 256	256	128		

THE IMPACT OF QUANTUM COMPUTING

Breaks Security

- Harvest Now; Decrypt Later
- Sensitive Data Exposed
- Encryption Keys Cracked
- Tampered Documents & Software

Upends Business Plans

- Disrupted Supply Chains
- Strategic Plans Unveiled
- Mandatory System Overhauls

Cost & Resource Implications

- Surge in IT Spending
- Training Workforces
- Resource Redistribution

Solution Takes Years

- Not a "drop-in" fix
- Requires architecture changes
- Potential interoperability issues

HOW ARE SECURE COMMUNICATIONS VULNERABLE?

A HARVEST & DECRYPT ATTACK ON VPN

0

QUANTUM RESISTANCE IN THE REAL WORLD

ML-KEM	ML-DSA	SLH-DSA	FN-DSA
Crystals-Kyber	Crystals-Dilithium	SPHINCS+	FALCON
FIPS-203	FIPS-204	FIPS-205	Proposed Name- Released
Key encapsulation for secure communications	Secure identities and electronic signatures	Security for long term use cases	Security for fast transaction processing
Available now from DigiCert	Available now from DigiCert	Available now from DigiCert	Available now from DigiCert

NOW WE HAVE ANOTHER PROBLEM

Need to upgrade asymmetric cryptography everywhere that it appears

certificates

Revocation services for

Security for web services

management flows

Security for mobile applications

Certificates that protect websites

Certificates that protect email Certificate issuance and

Certificates that authenticate users

Certificates that authenticate devices

Signatures on signed software Signatures on LLMs

Signatures on software libraries and components

Signatures on signed documents

Crypto embedded in hardware Protocol logic in firewalls

... and so on

"As certificates expire, RSA needs to retire."

11111

CNSA 2.0 added as an option and tested CNSA 2.0 as the default and preferred Exclusively use CNSA 2.0 by this year

Visual adapted from CNSA Announcing the Commercial National Security Algorithm Suite 2.0, Figure 1: Transition timeline

INDUSTRY HAS BEGUN MOVING TOWARDS PQC (3 Months – Worldwide)

Post-Quantum Encryption Adoption (Worldwide)

Post-Quantum encrypted share of human HTTPS request traffic

Last 3 months | May 29 2024 04:26 UTC

INDUSTRY HAS BEGUN MOVING TOWARDS PQC (2 WEEKS — AUSTRALIA)

Post-Quantum Encryption Adoption in Australia

Post-Quantum encrypted share of human HTTPS request traffic

Last 2 weeks | May 29 2024 04:28 UTC

ONE BROWSER AT A TIME

С	O A https://pq.cloudflare	research.com	☆) <u>එ</u>	≡

Cloudflare Research: Post-Quantum Key Agreement

On essentially all domains served (1) through Cloudflare, including this one, we have enabled hybrid postquantum key agreement. We are also rolling out support for post-quantum key agreement for connection from Cloudflare to origins (3). Check out our blog post the state of the post-quantum Internet for more context.

TLS identifier

You are using X25519 which is not post-quantum secure

Deployed key agreements

Available with TLSv1.3 including HTTP/3 (QUIC)

Key agreement

X25519Kyber768Draft00 0x6399 (recommended) and 0xfe31 (obsolete)

X25519Kyber512Draft00 0xfe30

X25519Kyber[x]Draft00 is a hybrid of X25519 and Kyber[x]Draft00 (in that order).

Software support

- Default [new!] for Chrome 124+ on Desktop. For older Chrome or on Mobile, you need to toggle *TLS 1.3 hybridized Kyber support* (enable-tls13-kyber) in chrome://flags.
- Default for Edge 124+. [new!]
- Firefox 124+ if you turn on security.tls.enable_kyber in about:config.

Our fork of Go.

Cloudflare Research: Post-Quantum Key Agreement

On essentially all domains served (1) through Cloudflare, including this one, we have enabled hybrid postquantum key agreement. We are also rolling out support for post-quantum key agreement for connection from Cloudflare to origins (3). Check out our blog post the state of the post-quantum Internet for more context.

You are using X25519Kyber768Draft00 which is post-quantum secure.

Deployed key agreements

Available with TLSv1.3 including HTTP/3 (QUIC)

Key agreement

TLS identifier

X25519Kyber768Draft00 0x6399 (recommended) and 0xfe31 (obsolete)

X25519Kyber512Draft00 0xfe30

X25519Kyber[x]Draft00 is a hybrid of X25519 and Kyber[x]Draft00 (in that order).

Software support

- Default [new!] for Chrome 124+ on Desktop. For older Chrome or on Mobile, you need to toggle TLS 1.3 hybridized Kyber support (enable-tls13-kyber) in chrome://flags.
- Default for Edge 124+. [new!]
- Firefox 124+ if you turn on security.tls.enable_kyber in about:config.
- Our fork of Go.

A ROAD FULL OF PROBLEMS

Google Chrome's new post-quantum cryptography is causing some issues

News By Craig Hale published yesterday

Chrome 124 not working? Try this

Image credit: Shutterstock (Image credit: Shutterstock)

Cloud Security, Encryption

Chrome users report broken connections after Chrome 124 release

Steve Zurier April 29, 2024

(Adobe Stock Images)

<u>Google Chrome</u> users have been reporting having trouble connecting to websites, servers, and firewalls after Chrome 124 was released last week with quantum-resistant X25519Kyber768 encryption.

THE CHALLENGE

With increased connectivity, the scale of what needs to be updated also increases.

Maintain Interoperability

Migrate Critical Systems Faster

Reduce Switching Costs

NIST ON CRYPTO AGILITY

"As the replacements for currently standardized public key algorithms are not yet ready, a focus **on maintaining crypto agility is imperative.**

Until new quantum-resistant algorithms are standardized, agencies should continue to use the recommended algorithms currently specified in NIST standards."

- "Report on Post-Quantum Cryptography", NIST, April 2016

National Institute of Standards and Technology

CRYPTO AGILITY – A FRAMEWORK

Users

Employees, Contractors, Military Personnel

Products

VPNs, PKIs, IoT Devices, Vehicles, Apps

Protocols

TLS, IPsec, SSH, S/MIME, Signal

Cryptosystems RSA, ECC, DH

torS Policies ADminis

A design feature that enables updates to future cryptographic algorithms and standards without the need to modify or replace the surrounding infrastructure. -The US Department of Homeland Security

AGILITY IN UNCERTAINTY

Quantum ready means staying nimble and responsive as quantum technology unfolds.

ROAD TO CRYPTO AGILITY

Discover

Identify and assess quantum vulnerabilities across your digital certificate ecosystem.

Manage

Optimize certificate lifecycle across networks with scalable and automated management tools.

Automate

Facilitate efficient PQC transition through automated workflows, reducing error and operational costs.

Deploy

Enable swift deployment of quantum-safe certificates, ensuring minimal disruption and maximized performance.

Automate

Deploy

Manage

Discovel

DIGICERT PQC PLAYGROUND

Complimentary tools to enable integration, interoperability, and performance testing. DigiCert experts will help you interpret results to create the right strategic plan.

Generate certificates to test authentication, digital signatures, key encapsulation

Understand the integration effort required across your environment

Identify interoperability risks across internal and external providers

Measure the computing resources required to support PQC at scale

LABS.DIGICERT.COM

Quantum-safe algorithms are the key to future-proof security.

APPLY WHAT YOU HAVE LEARNED TODAY

Next week you should:

• Conduct your own research on how large-scale quantum computing will impact public-key cryptography and how it will affect your business

In the first three months following this presentation you should:

- Perform an archeological expedition to understand how cryptography is used in your organization
- Identify and prioritize high-value assets for migration

Within six months you should:

- Collaborate with your internal team to create a migration plan
- Share your needs with key vendors to ensure their roadmap aligns

THANK YOU

digicert

DANIEL.SUTHERLAND@DIGICERT.COM

© 2024 DigiCert. All rights reserved.

MULTIPLE METHODS TO IMPLEMENT PQC SIGNATURES

Hybrid/Catalyst	Chameleons	Composites	Merkle Tree
Extensions modification	Issuance of two certificates	Combining signatures	Storing signatures in CT log
 The alternative key The alternative signature algorithm The alternative signature 	 A Base certificate A Delta certificate 	 RSA/ECC signature PQC Signature Combined Signature 	 Offloading of the signature to CT Depends on CT up time

INDUSTRY HAS BEGUN MOVING TOWARDS PQC (48 Hours – Australia)

Post-Quantum Encryption Adoption in Australia

Post-Quantum encrypted share of human HTTPS request traffic

Last 48 hours | May 29 2024 04:27 UTC

THE MIGRATION CHALLENGE

Key Establishment vs. Authentication

Key establishment can be easily upgraded because the client and server negotiate which algorithm to use.

- 1. Use quantum-safe key transport or key agreement algorithms
- 2. Use hybrid keys, a mix of both classic and quantum-safe algorithms

The complexity and interconnectivity of public key infrastructure demands action today in order to be ready for the quantum age, and difficult to do while maintaining backward compatibility.

